
@UpGuard | UpGuard.com1

DevOps Lessons
for CIOS

@UpGuard | UpGuard.com2

Table of Contents

I. The State of DevOps

II. Define DevOps Correctly

III. Collaboration First, Especially for Tools

IV. Don’t Create Another Team

V. It’s Not Just DevOps

VI. Don’t Throw Away ITIL

3

4

5

6

7

8

@UpGuard | UpGuard.com3

I. The State of DevOps

There is no doubt that the DevOps movement has
gone mainstream. When even IBM and HP are
dedicating sites to it there is no longer any question.
If we were to place it on the Gartner Hype Cycle even
the most devoted proponents would have to admit
that it’s rapidly approaching the “Peak of Inflated
Expectations”. What does this mean for you as a CIO?
Should you steer clear of the movement entirely until
things calm down a bit? Not at all. Should you be
cautious in your approach to “implementing” DevOps
though? Absolutely.

With vendors piling into an area that remains poorly
defined the risk of making a misstep on strategy is high.
It cannot be ignored though, the rewards in IT efficiency
and quality improvements of well implemented
DevOps initiatives are high. In a world of diminishing
margins any opportunity for competitive advantage
must be explored. Nascent as the movement may still
be, especially for the Enterprise, some clear lessons
have already emerged. Understanding these before
beginning may be the difference between success and
failure for your DevOps initiative and, ultimately, your
entire IT strategy.

This eBook will help you avoid the
most common mistakes.

Understanding these
before beginning may be
the difference between
success and failure for
your DevOps initiative
and, ultimately, your
entire IT strategy.

@UpGuard | UpGuard.com4

Much has been written on this topic but its importance
means repetition is required. DevOps is not a product.
It is not a job title. It is not a process. It is perhaps best
understood by understanding the forces that brought it
to life. In particular the increasing disconnect between
the development and operations functions within IT
departments. Despite ultimately playing for the same
team, their individual goals of improving product
through change (development) and maintaining
service quality and uptime (operations), mean that
they are frequently at odds. In most companies a
“wall” has formed between them and no one, least of
all the company as a whole, benefits from the battles
that rage as a result.

First and foremost then, DevOps is any effort within
an organization to align the goals of developers and
operations staff within an organization. In practice this
can be cultural or process-driven. It can be enabled by,
but should not be centered on, the implementation of
certain tools, particularly automation tools.

II. Define Devops Correctly

@UpGuard | UpGuard.com5

Changing culture is hard. Buying tools is easy, and
with the big boys now weighing in on DevOps the
old saying, “No one ever got fired for buying IBM/
Microsoft...” is once again in play. Tools play a very
important role in any DevOps initiative but they must
complement, if not follow, cultural changes within an
organization. Many a startup will point to their use
of Puppet or Jenkins when asked about how they do
DevOps. This won’t cut it in the Enterprise, and may
even be harmful (see “Tools as White Elephants” later
in this eBook).

In its simplest form you can break down DevOps into
two main elements, collaboration and automation*.
It’s no accident that collaboration is listed first here.
Starting with automation can make matters worse.
This is perhaps best illustrated with an example I
witnessed first hand. An application manager within
a company I once consulted with decided he would
take up the DevOps torch for his organisation by
starting to use Chef, a developer friendly configuration
automation tool, for the project he was working on.
After his team overcame the not insignificant hurdle of
Chef’s steep learning curve he was very satisfied with
the overall improvement he saw in the build process
within his development and test environments.

The problem came from the fact that there was
no consultation with operations on this change.
Unsurprisingly, the operations team decided that they
wanted nothing to do with Chef and that they would
not accept Chef builds into their Staging or Production
environments. The benefits shown were rendered
moot and use of Chef was discontinued.

* At UpGuard we believe you should add “Validation”
in between the two. Don’t automate what you haven’t
tested!

III. Collaboration First, Especially for Tools

To avoid similar mistakes
remember this:

• An initiative is not DevOps if it
is wholly contained within one
group.

• It is OK to lead with the
implementation of a tool if
agreement is reached on both
sides that it is the right tool for
the job.

• Avoid tools that enforce silos at
all costs. A cross-functional tool
that is only used by one team
just makes matters worse.

@UpGuard | UpGuard.com6

This one shouldn’t really need mentioning, unless
you’re a 25 year old CIO wunderkind you would have
seen this before. Take Service Oriented Architecture
(SOA) and Business Process Management (BPM).
Both worthy initiatives in and of themselves, but both
acronyms that fell victim to unnecessary hype and
broken promises from eager vendors. Tooling errors
aside one key lesson learned from the companies that
fell deepest in each of these areas was that building
their initiatives around new, separate teams had
at best negligent effect. At worst it made success
impossible. Why did they think it would work? Well
a central team would guarantee focus. It would
consolidate and emphasize the requisite skills. A more
cynical analysis would be that it represented an easy
KPI tick for the executive responsible.

The reasons it didn’t work are the same reasons it
won’t work for your DevOps initiative. By removing the
function from your main development and operations
team you remove their commitment to it. It becomes
someone else’s problem. Worse still, they know that if
it works it is someone else’s success. There is no need
to point out what this means for collaboration between
those teams and their new DevOps colleagues.

All you’ve achieved is the creation of a new silo. A
silo with noble goals but one that is doomed from
the start. Again, DevOps is first and foremost about
collaboration. In an environment where collaboration
between teams is sub par introducing a new team will
only make matters worse. DevOps must be everyone’s
responsibility, everyone’s initiative and, ultimately,
everyone’s success.

IV. Don’t Create Another Team

@UpGuard | UpGuard.com7

What’s in a word?
The simplicity and directness of the term DevOps is
a beautiful thing. You’d be hard pressed coming up
with a better word to describe the goal of aligning
the interests and work of your development and
operations teams. There is a problem here though.
As an Enterprise CIO your IT team is much more than
development and operations. There is little doubt that
these two groups stand to gain the most from a little
relationship counseling but answer this question. Do
your developers have nothing but kind words to say
about your QA team? Do your operations staff regularly
sing the praises of security? Are your architects
loved by anyone but themselves? Dismantling the
wall between development and operations is a great
place to start when dealing with a dysfunctional IT
department. Walls exist between other teams as
well though. Walls that not only won’t be addressed
by a narrowly focussed DevOps initiative, they will
likely be strengthened. Can improved collaboration
and automation benefit other areas? Of course it can.
Don’t make DevOps another silo. Include other teams
wherever possible. You should even consider using
another term to define any work in this space.

All you’ve achieved is the creation of a new silo. A
silo with noble goals but one that is doomed from
the start. Again, DevOps is first and foremost about
collaboration. In an environment where collaboration
between teams is sub par introducing a new team will
only make matters worse. DevOps must be everyone’s
responsibility, everyone’s initiative and, ultimately,
everyone’s success.

V. It’s Not Just DevOps

@UpGuard | UpGuard.com8

There has been some noise around DevOps
representing the death of ITIL. As was the case
with Mark Twain, these rumors have been greatly
exaggerated. The truth is that the DevOps movement
was not born in the Enterprise. It’s early proponents
are unlikely to have much knowledge of, let alone
experience with, ITIL. As an Enterprise CIO you will
have seen the positive effect an ITIL implementation
can have on an organization. When implemented
correctly, and pragmatically, ITIL brings order where
chaos reigned. DevOps devotees may wince at the
perceived constraints but we know that the processes
now form an essential part in most organizations.

The detail behind implementing DevOps within an
ITIL organization can be found in a previous eBook of
ours called, the ITIL Guide to DevOps. It will suffice here
to point out that the practical way to view DevOps
is as a means of process improvement for ITIL. Over
time, improved collaboration and automation will
reduce your reliance on ITIL processes. At Enterprise
scale though they will not replace them. Most large
companies who succeed with DevOps will do so on a
foundation of ITIL.

VI. Don’t Throw Away ITIL

