
API Strategy and Architecture:
A Coordinated Approach

22

The rise of the application programming interface (API)
represents a business opportunity and a technical challenge.
For business leaders, APIs present the opportunity to open new
revenue streams and maximize customer value. But enterprise
architects are the ones charged with creating the APIs that make
backend systems available for reuse in new Web and mobile apps.

It is vital that all stakeholders understand that the business
goals and technical challenges of an API program are intimately
related. Program managers must take responsibility for clearly
communicating the key business goals of a proposed API to
the architects who will actually build the interface.

Architects, meanwhile, must take responsibility for maintaining a
clear focus on these goals throughout the process of deploying
an API infrastructure and designing the interface itself. All
technical decisions should contribute to the creation of an
interface that empowers developers to build client apps that
end users will really value.

This eBook outlines best practices for designing results-focused
APIs that will form the cornerstone of your API program’s success.

Introduction

Enterprise IT in the 21st Century has been characterized by a move towards opening up previously siloed databases and applications, so that data
and functionality can be accessed across organizational boundaries or reused in new systems. The initial manifestation of this trend came with
service oriented architecture (SOA) and the most recent has been the explosion of web-oriented APIs.

On one level, the “Web services” central to SOA represent the same thing as Web APIs. Both are interfaces used to open up backend systems.
However, there are some fundamental differences between the two technologies, which are highly relevant to basic design decisions:

3

Part 1: From SOA to API

Figure 1: SOA vs APIs

Integration
Goal

Project Driver

Interface
Consumer

Internal or to partners

IT costs

Enterprise architects

External, often to
customers

Business revenues

App developers

SOA APIs

$$$

•	 The core technical difference is that SOA programs are
focused on creating Web services to facilitate internal,
server-to-server integrations, whereas Web APIs exist
to speed the creation of Web and mobile-based apps,
often of a customer-facing nature.

•	 SOA programs are generally driven by IT departments
and focused on cost savings, but API programs more
commonly originate with business development
organizations and focus on generating new revenues.

•	 Most SOA projects are created by and for enterprise
architects to help them more easily integrate
heterogeneous systems and deliver new IT services.
API programs, by contrast, should be focused on
meeting the needs of application developers.

4

Goals of API Design

Part 1: From SOA to API

Nevertheless, many API programs are growing out of previous SOA initiatives. Web services focused on internal or
partner integrations are being opened up to developers—both within and outside the enterprise. During this process,
it is important for API designers to remember that an API program has drivers and requirements quite different
from the ones that initially led enterprises to open their IT assets via Web services.

With this in mind, the broad goals of API design in general can be defined as:

•	 Enabling self-service for app developers and app users alike

•	 Reducing barriers to accessing valuable enterprise resources

•	 Prioritizing the needs and preferences of client app developers

•	 Encouraging collaboration between and among internal and external resources

•	 Addressing the security and scaling issues of exposing IT assets to the open market

Above all, API design must be focused on maximizing the business value of the interface. In part two, we will take a
closer look at how APIs add value to the business.

Part 2: The API Value Chain

5

APIs may have no intrinsic value, but they do bring enormous value
to the business. They do so through their backend data and the
application functionality the interface enables. In this view, the API
is simply a facilitator that allows systems with great organizational
value to be reused in applications more likely to yield direct
business value.

While this is a useful perspective, when looked at more closely, it
becomes clear that a well-designed API is, in fact, a complex and
powerful connector. It joins a wide variety of business assets—IT
systems, internal and external personnel, client applications and
customers—in order to more effectively realize the potential value

of those assets. We can refer to this state of affairs as
“the API value chain.”

It is important to understand that an API delivers value in this
relatively complex way because it is otherwise quite easy to lose
sight of the fact that APIs exist to deliver business value, not
technical efficiencies. But while APIs deliver value more directly
than SOA, they do so less directly than the browser-based Web—
where a site can deliver actual sales leads or sales. APIs generate
revenue in a more subtle way, by linking the various assets
outlined below.

Figure 2: The API Value Chain

Backend Systems API Providers App Developers Client Apps End Users

Some Examples of How APIs Generate Value
Any API will have its own unique value. Broadly speaking though,
enterprises may use an API as a way to:

Generate new revenue directly
An API can be a direct source of revenue if developers are charged for
access or if the interface is used to facilitate the in-house creation of
pay-to-play applications or to enable ecommerce

Extend customer reach and value
APIs simplify the process of reaching new customers or increasing the
value of current customers by offering existing services via new
platforms and devices

Support sales and marketing activities
An API can also help a company to market its products and services by
enabling the creation of the kind of engaging, immersive functionality
associated with online marketing best practices

Stimulate business and technical innovation
APIs help organizations develop new systems, offerings and strategies
because they reduce barriers to innovation by making it possible to
implement ideas without changing backend systems

6

Part 2: The API Value Chain

7

•	 What systems are being exposed and where (and with whom)
do they reside?

•	 Who are the target developers and what kind of apps will
they build?

“Who are the target developers?” is a particularly important question
and one that is relevant to the most fundamental way APIs are
categorized—as “private” or “open.” Private APIs are for use only within
the enterprise or, in some cases, by partner organizations. Open APIs
are made available to the wider community of external developers,
who are free to create their own apps using the enterprise’s
backend resources.

Private APIs are closer in spirit to Web services. Typically, the goal of a
private API will be to help internal developers, contactors or partners
more efficiently create apps for use internally or externally. As with Web
services, cost savings often represent the key driver as APIs allow new
applications to be developed in a cost-effective manner. However, many
private APIs are used to create public-facing Web and mobile apps that
generate new business value more directly.

Open API programs tend to focus on adoption. By allowing third-party
developers to access their APIs, enterprises aim to make their IT assets
available to the widest possible user base. Therefore, developer
adoption is a key metric for measuring the success of an open API.
While there are fewer open APIs than private APIs, it is with the open
APIs that both the greatest business opportunities and the most
significant design challenges/technical risks lie.

In fact, not only do open APIs create a range of completely new
integration design challenges (for example, how to open backend
systems to external developers without exposing these systems to
hackers), they also create new business risks. A poorly conceptualized
open API program can lead an enterprise to cannibalize its own core
business and potentially expose the enterprise’s critical business
assets to competitors.

Business considerations like these must drive technical design decisions.
We will discuss how to align business considerations with technical
decisions further in part three.

Making Design Decisions
API design decisions should be driven by what precisely the API will link—what will be on either side of the interface, both inside the organizational
IT infrastructure and outside the enterprise firewall. Specifically, it is vital to answer these two questions:

Part 2: The API Value Chain

8

Whereas SOA has historically sought to improve organizational processes, API
programs seek to increase business revenues. Therefore, API design decisions
must focus clearly on the core strategic business aims of the company’s API
program. Before starting to design an API, you must be clear about what problems
the API program aims to solve, which opportunities it aims to realize and how it
is going to do so. Specifically, it is important to answers these questions:

•	 What assets will be made available?
•	 How should the API make those assets available?
•	 What kind of applications could be built against the API?
•	 How can developers be motivated to use the API?
•	 How will the applications create value for the business?

Communication and collaboration are the keys to designing an API that addresses
these challenges and opportunities. Throughout the process of designing,
deploying and managing an interface, program managers and API architects must
work closely to ensure they agree on their core strategic goals, what they will do
to achieve these goals and how they will evaluate the outcomes of their efforts.
Specifically, business and technical roles must be in agreement on:

•	 The objective and ideal end-state of the program
•	 The initial tasks that will allow the organization to work towards

these objectives
•	 The key metrics that will be used to measure success
•	 The ongoing day-to-day tasks that will allow the program to keep hitting

its targets

Part 3: Aligning API Design
with Business Goals

9

Figure 3: Aligning API Goals

Once communication has been established, and objectives, tasks and metrics have been agreed
upon, the real work of API design can begin, which is what we shall discuss in part four.

API EvangelistAPI Program Manager API Architect

Targets Tasks Metrics

Target DevelopersBusiness Leaders

Technical ResourcesRevenue Opportunities

Part 3: Aligning API Design with Business Goals

Assigning a Sponsor
To ensure business managers and architects stay on the same page, the program must have a “sponsor” who is
able to span the divide that often appears between technical departments, business managers and app developers.
Organizations often make the mistake of assigning this role to a non-technical marketing manager, but this “API
evangelist” must be able to understand the organization’s architectural constraints and share the enthusiasms of
app developers.

The evangelist’s role is to establish clear communication with all stakeholders, specifically:

•	 “Selling” the API program to executives and other senior decision makers

•	 Ensuring API architects understand program managers’ business goals

•	 Helping program managers understand architects’ technical resources and constraints

•	 Gathering information on target developers’ preferences and requirements

10

Some Notes on API Business Strategy
Program managers (or “API owners”)—in collaboration with the organization’s API
evangelist—have to take responsibility for crafting a clear API business strategy
and communicating this strategy to executive-level decision makers, as well as the
architects and developers who will implement the technical side of the strategy.

The first step is to establish a clear business objective and a vision statement for the
API program that is aligned with the company’s broader vision. An API is not a purely
technical solution and should be treated as a product or business strategy in itself—
albeit one embedded within the overall enterprise business strategy.

With this in mind, the next step should be to build a business model around this
vision, outlining the details of:

Costs, resources and efficiencies

•	 The systems, relationships, activities and other resources the program will
leverage and how the program will empower the enterprise to make better use
of these resources

Value, revenue and innovation
•	 The customers, markets and channels the program will target and how technical

innovation will make it possible to generate new revenue from these targets

The core of this business model should be a value proposition that clearly outlines
the real, measureable business value the API program will offer to the business.

Part 3: Aligning API Design with Business Goals

Part 4: Designing a Usable API
From a purely technical perspective, designing an API is relatively easy. But, designing one that contributes real value to the business
can complicate matters. Beyond functionality, enterprise architects must also consider business goals and the end-user experience.

This may be particularly challenging for anyone who is extending a
SOA project into the API realm. In SOA, it is the architect’s needs that
are central, and user adoption is assumed. Consequently, architects
with SOA backgrounds will commonly approach API design decisions
with the assumption that interface and app users will have the same
needs and biases they have. This almost always leads to bad
design decisions.

With APIs, the design focus should not be on functionality, but on
user experience. The key question is not “What functionality do I
need to expose?” but “How will developers use this interface?”
If developers do not want to use your API, then it has no value.
Therefore, design must be developer-centric and focused on providing
the lowest possible barrier to entry for the target developer audience.

Whether an API is published privately or openly, a good developer
experience (DX) will be essential to its success. DX is significantly
harder to quantify than exposed functionality. While it can be defined
as the sum of interactions between the API provider and the
developer, the result of this sum is less a number and more of a
feeling: how does the interface make developers feel?

Obviously, this is a rather nebulous metric, but there are certainly
practical steps you can take in the real world to understand how your
developers are likely to feel about the different approaches you might
take to designing your API. Specifically, you should:

•	 Create developer profiles
•	 Prototype and test your API in the field

11

12

Developer Profiles
You cannot create a usable API unless you know the needs and
preferences of your target developer. There is a tendency to assume
that developers who build client applications against APIs are young
self-described “hackers,” obsessed with the latest languages and
protocols. But, in many cases—particularly in private API scenarios—
developers of enterprise services are still loyal to more ingrained ways
of doing things.

The point is that every API project will need to address a particular
developer audience in order to be successful. In some cases, this may
be a very homogenous group with shared needs. In others, you may
need to address a wide variety of preferences. Regardless, you must
understand who will be using your API and how you can define the
interface to ensure these developers can quickly and effectively use
your backend resources.

So, the first step is to draw up a persona (or set of personas) to define
the type (or types) of developer you are targeting with your APIs.
This should include information on:

•	 Who they work for (and in what department) and why they
are developing an app

•	 Programming skills, technical constraints and
language/protocol preferences

•	 Personal temperament and in what context they work best

Prototyping
Once you have an understanding of the work goals, technical
requirements and personal preferences of your target developers,
you can start building an interface that addresses these criteria.
However, before creating a production API bound to real data or
backend systems, you should build a lightweight prototype that can
more easily be changed. This prototype will allow you to test the
design assumptions you have made based on your target persona.

One of the advantages of building a lightweight prototype based on
“throwaway” data or functionality is it allows you to apply minimal security
and provide the lowest possible barrier to entry for developers. This will
make it possible to engage your target developers early on. They will write
light apps to test your API design and provide feedback. Then, you can make
changes to the interface and test again. After a couple of iterations, you
should be on the right track.

Of course, none of this addresses how you will make fundamental, real-world
decisions about interface design. In part five, we begin to discuss the actual
API design options.

Part 4: Designing a Usable API

Figure 4: Useful API Prototyping Tools

Various online tools
exist that can simplify
the process of building
and testing lightweight
API prototypes.

Popular examples
include...

A design tool that makes it possible
to quickly build an API prototype,
without writing any code.

Apiary
aplary.lo

RAML
raml.org

SWAGGER
swagger.io

API description languages that can
help developers discover and begin
to use your prototype interface.

1
2
3

13

Choosing an API style is one of the most important decisions an interface designer can make. Decisions of this type will inevitably be
affected by technical considerations, such as the specific nature of backend resources being exposed or the IT organization’s constraints.
But, other aspects, such as business goals of the API program and the needs and preferences of the target developer audience must also
be considered.

Today’s common API design styles can be categorized as:

Part 5: API Styles

Web Service
(aka Tunneling)

Pragmatic REST
(aka URI)

Hypermedia
(aka “True Rest”)

Event-Driven
(aka IoT)

14

The Web Service style is a transport-agnostic, operation-based approach
to API design, which uses Web Services Description Language (WSDL) to
describe interfaces. It comes from the SOA world, where Web Service
interfaces were used to integrate heterogeneous networks. Therefore,
this may be a good choice of style if your program involves extending
SOA interfaces. The large amount of tooling that exists for Web Services
also means that client applications can often be built quickly and easily.

However, there are serious limitations to using this style. First of all,
while this transport-agnostic style can use Hypertext Transfer Protocol
(HTTP), it is very inefficient in this context. Therefore, it is not the best
choice if your services are being extended to the open Web.

Furthermore, it is only practical if your target developers are familiar
with SOA standards like WSDL, Simple Open Access Protocol (SOAP) and
Remote Procedure Call (RPC). For most client developers, the learning
curve is likely to be steep.

This is particularly true in open API scenarios and especially those
focused on mobile. As a rule, app developers don’t like SOAP as a
programming language and the tooling available for building Web
Service clients tends not to support mobile. Practical considerations
aside, there is a problem of perception: using the Web Service style
could make your organization seem like a slow-moving “dinosaur,”
which is bound to decrease adoption among mobile app developers.

The Pragmatic Representational State Transfer (REST) style is a simpler,
more Web-centric approach to designing integration interfaces.
This style, which uses URI instead of WSDL and is transport-specific
(it exclusively supports HTTP), has largely taken over from the Web
Service style in enterprise API design. Indeed, the term “Web API” is
commonly used interchangeably with “RESTful API” and achieving
“RESTfulness” is often considered to be a key goal of any interface
design project.

In fact, most REST APIs in use today do not fully meet the REST
criteria outlined in Roy Fielding’s defining Ph.D thesis from 2000.
Whereas, REST was defined to formally describe the kind of dynamic,
hyperlinked interactions that power the Web, most Web APIs deal in
the exchange of static data. Therefore, for the sake of argument, it is
more accurate to refer to this design style as “Pragmatic REST.”

It is easy to see why the Pragmatic REST style has become so popular.
Because URI is intuitive and Web and mobile developers are mostly
familiar with RESTful interfaces, developer adoption and productivity
are likely to be high. Furthermore, the concentration on HTTP makes
Pragmatic REST APIs ideal for developing today’s Web and mobile
applications. Right now, this is likely to be the go-to style for the
majority of projects.

However, the Pragmatic REST style is not perfect for every context and
future developments seem likely to challenge its dominance. There are
definite tradeoffs with this style: it is limited to four methods, it can be
“chatty” and URI design is not standard. Furthermore, with the Internet
of Things (IoT) and Big Data greatly expanding and altering online
networking, there are likely to be challenges to this specifically
web-centric approach.

Pragmatic REST

Web Service

Part 5: API Styles

151515

The Hypermedia API design style is a task-based approach that aims
to provide a more sustainable alternative to Pragmatic REST. Like
Pragmatic REST, Hypermedia APIs are focused on URI, HTTP and
RESTful standards generally. But in a sense, the Hypermedia Style
represents a more faithful application of RESTful architecture, according
to Fielding, which describes why the Web has proven to be so scalable.

As such, the Hypermedia approach is even more Web-centric: the
hyperlinks and forms of the Web are mirrored in the way a Hypermedia
API provides links to navigate workflow and template input to request

information. Just as the RESTful architecture of the Web has proven to
be highly scalable and evolvable, a well-designed Hypermedia API can
continue to support new applications for years.

While this architectural approach is clearly an attractive option for
enterprises seeking to create scalable APIs that reliably support Web
and mobile applications over the long term, it is still an emerging
design style with a notable lack of associated tooling. This may impact
developer adoption rates and make it harder for those developers that
do adopt the API to quickly create powerful client apps.

While HTTP-focused styles like Pragmatic REST and Hypermedia may
be ideal for the Web and mobile apps as we know them, the arrival
of HTML5 and IoT is changing things—creating the possibility of more
dynamic apps, but also demanding more lightweight interfaces.
In this context, the Event-Driven style has appeared as a transport-
agnostic alternative, ideal for enabling apps to use WebSocket and
other emerging alternatives to HTTP.

This style, which focuses on server- or client-initiated events, provides a
low-overhead option, able to deliver better performance in scenarios
where a large number of small messages are passing between the

backend and the app. Therefore, it is ideal for IoT and a range of
mobile use cases—especially instant messaging, video chat,
multi-player games and so forth. It is also likely to appeal to the
most cutting-edge developers.

Of course, not all developers are that obsessed with being edgy and
there are plenty of use cases where a conventionally RESTful approach
will be more appropriate. HTTP is still the transport protocol that
powers the Web and it does not accommodate client-sent events
particularly well. Furthermore, the request-reply model this style is
built upon makes building client apps more complex for developers.

Event-Driven

Hypermedia

Part 5: API Styles

16

Your chosen style will depend on your technical constraints, business goals and developer preferences. Be careful
not to fall into the trap of adopting a “fashionable” style if it is not appropriate for your specific context. At the same
time, try to pick a style that will prove scalable and adaptable over the long term, as your resources change, your user
audience grows and the very nature of online networking evolves.

No matter what style you choose, there are certain architectural components you will want your API to include.
In part six, we will outline these components and how they will be organized.

Figure 5: Architectural Styles for API Design

Web Service Pragmatic REST Hypermedia Event-Driven

SOA-Related
Lots of tooling available
Not suitable for mobile

Ideal for Web and mobile apps
Familiar to most app devs

May not be adaptable over time

Highly web-centric
Scalable and evolvable

Not familiar to many devs

Appropriate for loT and devices
Lightweight and dynamic

Not suitable for standard scenarios

Part 5: API Styles

17

Figure 6: Architectural Layers

The architectural design styles previously outlined should
provide a model for how you design the architectural
framework that enables the unique functionality of your
API implementation. Certain use cases will call for the
implementation of specific design styles. It is also
important to note, however, that there are a number
of components that should be included in any API
architecture, no matter what the use case.

These common architectural components should not be
built into the implementation of any given API. Instead,
they should be deployed into a core API infrastructure
that will sit between the organization’s APIs and the client
apps that leverage these APIs. Abstracting out these
components makes it quicker and easier to design
additional APIs, to update a range of APIs in unison and
to ensure the smooth running of APIs, backend systems
and client applications.

For maximum effectiveness, these components should be
architected in a layered manner, so that all data traffic
must pass through each of the layers named to the right,
in the specified order.

Part 6: API
Architecture

Security Layer

Caching
Layer

Representation
Layer

Orchestration
Layer

Client
Applications

End Users

Backend
Systems

API
Implementation

The Security Layer
As well as opening up a world of business opportunities, APIs have
the potential to open the enterprise to serious new security threats,
by exposing sensitive backend systems and data to the outside world.
APIs are vulnerable to many of the security threats that have plagued
the Web plus a range of new API-specific threats. Therefore, it is vital to
deploy strong, API-specific security at the edge of your API architecture.

This need for strong security can conflict with a basic goal of API
design—a well-designed API makes it easy for developers to create apps
that provide seamless access to enterprise resources. Strong security is
likely to impact this ease of access. Deploying security in a centralized
API architecture (rather than in the API implementation) will help
mitigate this impact, as will enabling the use of flexible access
management technologies like OAuth and OpenID Connect.

The Caching Layer
Interface efficiency will prove essential to providing the frictionless
developer and end-user experiences necessary for meeting your API
program’s adoption and retention goals. One way to maximize API
efficiency is by placing a caching layer near the edge of the API
architecture. This layer should allow cached responses to be delivered
for common requests, reducing pressure placed on the actual API
implementations and backend resources.

The Representation Layer
Clearly, the presentation of your API should be as developer-friendly as
possible. By abstracting this element away from the implementation,
you can focus on centrally creating a welcoming way into your APIs,
without impacting the APIs or backed resources themselves. This makes
it significantly easier to present complex backend systems as Web and
mobile-centric interfaces that developers can quickly understand and
leverage to make powerful, user-friendly apps.

The Orchestration Layer
While some apps may be able to deliver value by accessing a single
resource via a single API, the possibilities grow exponentially when
you combine data from multiple APIs (including ones from other
enterprises) and backend resources. Deploying an orchestration layer
next to the interfaces themselves can enable such combinations,
as well as simplify the process of composing new implementations
from multiple backend resources.

The most efficient way to create a centralized API architecture is by
deploying an API Management solution. In part seven, we will outline
key API Management components.

18

Part 6: API Architecture

Building an infrastructure that centralizes common architectural
components of secure, developer-centric APIs can significantly
simplify the process of implementing APIs that add real value to
your business. But, building such an infrastructure internally can be
a significant challenge. Thankfully, a range of enterprise software
vendors now offer “API Management” solutions that remove the
need to develop this critical infrastructure in-house.

Furthermore, as the name suggests, API Management solutions
also include functionality for managing and optimizing the
performance of APIs over the long term. And the most powerful
solutions also have features for building a Web-based interface
through which developers can discover, learn about and access
APIs—an absolutely vital part of presenting a developer-centric API,
which cannot be built into the implementation itself.

Part 7: API Management

19

It is important to note that API Management is not simply a technical requirement. It will inevitably play a role in the business success of any
enterprise API program. Managing the composition, performance and security of enterprise APIs is essential to ensuring the organization gets a
good return on its investment in an API program. Likewise, it is vital to actively engage and manage developers to ensure they build apps that
create business value.

For most enterprises, an API Management infrastructure will prove essential to designing, deploying and maintaining APIs that developers will
use to create truly powerful new apps.

20

Figure 7: API Management Components

App Developer

Client AppEnd User

API Owner

API Implementation

Developer Portal

API Gateway

Part 7: API Management

Discover API Management Essentials with the 5 Pillars of API Management eBook

API Architect

Backend Systems

API Management Components
An enterprise-level API Management solution will have two key components:

•	 API Gateway – Delivers the security, caching and orchestration functionality needed to deploy a core API architecture
•	 Developer Portal – Provides a customizable interface, through which developers access the APIs as well as

documentation, community forums and other useful content

http://www.ca.com/us/collateral/ebooks/na/5-pillars-of-api-management.aspx

2121

From an architectural standpoint, APIs represent an extension
of SOA. Just as SOA created interfaces to open up legacy systems
for reuse in new services that might span organizational
boundaries, APIs are used to open the enterprise backend to
developers building applications for mobile devices and the
public Web. This is a significant extension and the design
requirements for a Web API are likely to be very different
from those for a SOA Web service.

Whereas, SOA programs are generally driven by the need for IT
cost savings, API programs focus on generating new revenue
streams. A Web API connects a range of existing business assets
in order to create value in previously unforeseen ways. Good API
design is always focused on business results. Therefore, API
design and architecture practices must be aligned with the
organization’s business strategy, from the ground up.

API owners and architects must communicate to ensure they
agree on key goals, how they aim to achieve these and how they
will measure their success. To ensure communication is effective,
an API evangelist who is able to bridge the gap between business
and technical roles should parse the needs of business leaders,
API owners, app developers and enterprise architects in order to
negotiate an appropriate set of targets, tasks and metrics.

In practice, designing an API for business success usually means
creating an interface that developers actually want to use.
Therefore, before you build anything, it is vital to systematically
research your developer audience in order to understand who
your target developers are and what they want from an API.
It can also be helpful to test any assumptions about developer
preferences by offering lightweight prototype APIs.

Conclusion

Once you are ready to design your actual API implementation,
you will have to choose the design style that best suits your project.
Web Service APIs will suit internal programs aimed at developers with
experience in SOA. Pragmatic REST APIs are more suitable for open API
projects focused on mobile devices and the Web. The Hypermedia and
Event-Driven styles are emerging as approaches that might prove more
sustainable in the mobile and IoT-driven future.

Whatever the style, there are certain architectural elements that all
APIs must include—namely security, caching, representation and
orchestration. For maximum efficiency and manageability, these
elements should not be built into the individual API implementations.
Instead, all of the APIs should leverage a central, layered API
architecture that sits between the edge of the enterprise and
the APIs themselves.

The most efficient and effective way to deploy a central API
architecture—and ensure the API program remains successful over
the long term—is to adopt an API Management solution. There are a
variety of solutions on the market, but most include two common
components:

•	 An API Gateway that provides security functionality and other
key infrastructure

•	 A Developer Portal that simplifies the process of engaging and
enabling developers

There is a lot at stake in today’s enterprise API projects—huge business
opportunities, significant security risks and much more. It is vital that
you do your preparation before starting to build an API: align design
goals with business goals; establish the preferences of your target
developers; choose an appropriate implementation style; and deploy
an API Management infrastructure. Then you will be ready to build a
truly valuable API.

22

Figure 8: Prerequisites for Good Design

Align technical and
business goals

Establish developer
preferences

Choose an API
design style

Deploy API
infrastructure

Conclusion

$

Only CA API Management enables organizations to integrate systems, simplify app development and monetize data with
the level of API security and protection enterprises need today. Learn about CA API Management at ca.com/api

http://ca.com/api

Copyright © 2015 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. This document is for
your informational purposes only. CA assumes no responsibility for the accuracy or completeness of the information. To the extent permitted by applicable law, CA provides
this document “as is” without warranty of any kind, including, without limitation, any implied warranties of merchantability, fitness for a particular purpose, or noninfringement.
In no event will CA be liable for any loss or damage, direct or indirect, from the use of this document, including, without limitation, lost profits, business interruption, goodwill,
or lost data, even if CA is expressly advised in advance of the possibility of such damages.

CS200-131275

CA Technologies (NASDAQ: CA) creates software that fuels transformation for companies and enables them to seize the
opportunities of the application economy. Software is at the heart of every business, in every industry. From planning to
development to management and security, CA is working with companies worldwide to change the way we live, transact and
communicate – across mobile, private and public cloud, distributed and mainframe environments. Learn more at ca.com.

About CA API Management
With over 300 API Management customers across sectors as diverse as communications, financial services, government and retail, CA Technologies
offers industry-leading technology and know-how that helps organizations deliver value through APIs. CA provides a complete API Management
solution, including a full-functioned API Gateway with military-grade security features, plus a developer portal offered in on-premises and SaaS
versions. Learn about CA API Management at ca.com/api.

API Academy
API Strategy, Architecture and Design Services
The API Academy team consists of industry experts who have been brought together by CA Technologies, to develop free resources for the
community and provide expert consulting services for organizations that want to take their API programs to the next level. To learn how the API
Academy can help your organization with API strategy, architecture and design, visit apiacademy.com.

http://ca.com
http://www.ca.com/api
http://www.apiacademy.co

