
HANDBOOK
Securing Your Website in 13 Steps:

The Website Security Checklist

@UpGuard | UpGuard.com

handbook Securing Your Website in 13 Steps

2

overview
Putting a website on the internet means exposing that website to hacking attempts,
port scans, traffic sniffers and data miners. If you’re lucky, you might get some legitimate
traffic as well, but not if someone takes down or defaces your site first. Most of us know
to look for the lock icon when we’re browsing to make sure a site is secure, but that only
scratches the surface of what can be done to protect a web server. Even SSL itself can
be done many ways, and some are much better than others. Cookies store sensitive
information from websites; securing these can prevent impersonation. Additionally,
setting a handful of configuration options can protect both your website against attacks
and your customer’s data from compromise. Here are 13 steps to harden your website
and greatly increase the resiliency of your web server.

@UpGuard | UpGuard.com

handbook Securing Your Website in 13 Steps

3

1. Ensure Sitewide SSL
The lock in the browser address bar means the site you’re on is secure, right? What it
really means is that you are currently using an SSL connection. But to take full advantage
of SSL and verify encrypted connections, SSL should be sitewide and enforced, not
a page-to-page choice that hands the client back and forth between encrypted and
unencrypted connections. Every page should only be available on SSL. Information
transmitted outside of SSL connections passes in plain text and can easily be intercepted
by anyone willing to put the work in. A single form with sensitive information or password
entry on the unencrypted side could compromise the entire site.

2. Verify the SSL Certificate
When does your SSL certificate expire? Is it trusted by default in all of the major
browsers? Knowing the answers to these questions will make sure the effort you put
into implementing SSL isn’t wasted by an overlooked certificate expiration or turned
into problems for customers because they get pop-up warnings about your site. To
ensure the certificate doesn’t expire, some mechanism should be in place to warn
relevant parties when the certificate is near expiration. Most major certificate providers
are automatically trusted in all common browsers, but it’s always worth verifying that
the company from whom you buy your certs is keeping up with the various security
changes browser manufacturers are pushing. Failure to do so can lead to situations like
when Firefox and Chrome blocked sites that used a weak Diffie-Hellmann key. Major
changes like this require website administrators to re-issue any affected certificates
and/or update their servers’ configurations.

3. Use SHA256 Encryption
Speaking of major changes, certificates using the previously standard SHA1 encryption
are no longer considered secure, as SHA256 standards have taken over, drastically
improving the encryption. You can view the certificate of your website and if it has a
SHA256 fingerprint, then it’s using modern encryption. If it only has a SHA1 fingerprint,
it should be re-issued or replaced with a 2048-bit SHA256 certificate, because SHA1
support will be removed from most browsers in 2017. Encryption standards will continue
to change as ways are found to crack existing standards and more secure methods are
developed.

@UpGuard | UpGuard.com

handbook Securing Your Website in 13 Steps

4

4. Disable Insecure Cipher Suites
Even if you have the best encryption options available, that doesn’t mean that other,
worse, options aren’t coexisting with them. Default configurations of most web servers
still allow SSL cipher suites that are considered insecure, such as RC4. These should be
explicitly disabled on the web server (Apache, IIS) so malicious actors can’t force one of
these suites and exploit it. This is crucial, not only to security, but usability, as websites
allowing insecure cipher suites will be automatically blocked by some browsers.

5. Obscure Header Info
Advertising the type and version of your web server to the internet only aides those
seeking to compromise it. By narrowing the window to a specific platform or version,
attackers can focus their attempts on known vulnerabilities for the specific web server
you’re running. This is true for X-Powered-By headers, server information headers
and ASP .NET headers where available. It is recommended best practice to obscure
these headers and present no identifying information to visitors. This is not the default
configuration, so many production servers still have these headers available, probably
unknowingly.

6. Enable HTTP Strict Transport Security
HTTP Strict Transport Security (Linux, Windows) ensures that browsers only communicate
with a website over SSL. Non-SSL requests (http://) will be converted to SSL requests
(https://) automatically. Failure to utilize this measure can result in a man-in-the-middle
attack, where a malicious actor could redirect a web user to a bogus site between the
non-SSL and SSL handoff.

7. Use HttpOnly Cookies
Protecting cookies makes sure that information your site stores on visiting systems
stays private and can’t be exploited by an imposter. HttpOnly cookies restrict access to
cookies so that client side scripts and cross-site scripting flaws can’t take advantage of
stored cookies. This should be enabled so modern browsers that support HttpOnly can
have the additional protection. Users with browsers that don’t support it will still receive
traditional cookies.

@UpGuard | UpGuard.com

handbook Securing Your Website in 13 Steps

5

8. Use Secure Cookies

Secure cookies can only be transmitted across an SSL connection. This prevents
cookies with potentially sensitive information from being sniffed in transit between the
server and the client. Failure to use secure cookies would allow a third party to intercept
a cookie sent to a client and impersonate that client to the web server. Obviously to
use secure cookies, you should already have ensured sitewide SSL, as cookies will no
longer be delivered over unencrypted connections.

9. Secure the Web Server Processes
The web server process or service itself should not being running as root or Local
System. On Linux systems, most web servers will run as a dedicated user with limited
privileges, but you should double check what user it is and what permissions that user
has. On Microsoft systems, chances are Local System is the default config and as such
should be changed before production to a dedicated service account, local, unless the
web server needs to access domain resources. This user should not be an administrator
(or worse a domain admin) and should have file access only to what is necessary. Doing
this prevents a compromised web server from further compromising other resources by
isolating and restricting the account the web server uses.

10. Ensure Forms Validate Input
If you have forms that accept user input, every data input mechanism should be validated
so that only proper data can be entered and stored in the database. This is the first step
to protect against SQL injection and other exploits that enter bad data into a form and
exploit it. This step must be taken on the development end, so it should be rolled into
standard procedures if it isn’t a part of them already.

11. Protect Against SQL Injection
The second and most important step to protect yourself against SQL injection attacks
is to utilize well-implemented stored procedures rather than open queries to perform
database functions. By restricting your web application to run stored procedures,
attempts to inject SQL code into your forms will usually fail. Stored procedures only
accept certain types of input and will reject anything not meeting their criteria. Stored
procedures can also be run as specific users within the database to restrict access even
further. Again, since this is structural, it should be a best practice during the development
and updating of the website backend.

Name

Email

@UpGuard | UpGuard.com

handbook Securing Your Website in 13 Steps

6

12. Protect Against Denial of Service
Denial of Service (DoS) attacks flood servers with connections and/or packets until they
are overloaded and can’t respond to legitimate requests. There’s no way to absolutely
prevent these types of attacks, because they use legitimate connectivity lanes, but there
are measures you can take to resist them if they happen. Utilizing a cloud mitigation
provider such as Akamai or CloudFlare will almost certainly prevent DoS attacks from
causing you an issue. These solutions leverage the huge resources of distributed
cloud architecture to offset the load of a DoS attack, as well as having identification
and blocking mechanisms for malicious traffic. Alternatively, you can set up mitigation
in-house, which operates on similar principles, but will be limited to the resources of
whatever hardware your solution runs on.

13. Regularly Test Configurations
When does your SSL certificate expire? Is it trusted by default in all of the major
browsers? Knowing the answers to these questions will make sure the effort you put
into implementing SSL isn’t wasted by an overlooked certificate expiration or turned
into problems for customers because they get pop-up warnings about your site. To
ensure the certificate doesn’t expire, some mechanism should be in place to warn
relevant parties when the certificate is near expiration. Most major certificate providers
are automatically trusted in all common browsers, but it’s always worth verifying that
the company from whom you buy your certs is keeping up with the various security
changes browser manufacturers are pushing. Failure to do so can lead to situations like
when Firefox and Chrome blocked sites that used a weak Diffie-Hellmann key. Major
changes like this require website administrators to re-issue any affected certificates
and/or update their servers’ configurations.

@UpGuard | UpGuard.com

handbook Securing Your Website in 13 Steps

7

conclusion
There are many other steps that can be taken to protect against threats to a web
server, but by following these 13, you should be resilient against all of the most common
vulnerabilities. Furthermore, by integrating these practices into development and
operations duties, companies can build a habit of security. Finally, by routinely testing
configurations, companies can track changes and address security problems before
they are exploited. UpGuard’s free external risk grader analyzes websites for most of
these security measures. Take a look at how secure your favorite websites are. How
does yours hold up? Better yet, how secure is your website?

Check your website right now

Scanning...

https://app.upguard.com/webscan
https://app.upguard.com/webscan

