
HANDBOOK
10 Steps for Configuring a New Server

The Server Checklist

@UpGuard | UpGuard.com

handbook 10 Steps for Configuring a New Server

2

overview
That’s a nice new Linux server you got there… it would be a shame if something were to
happen to it. It might run okay out of the box, but before you put it in production, there
are 10 steps you need to take to make sure it’s configured securely. The details of these
steps may vary from distribution to distribution, but conceptually they apply to any flavor
of Linux. By checking these steps off on new servers, you can ensure that they have at
least basic protection against the most common attacks.

That’s a nice new
Linux server you
got there…

@UpGuard | UpGuard.com

handbook 10 Steps for Configuring a New Server

3

1. user configuration
The very first thing you’re going to want to do, if it wasn’t part of your OS setup, is change
the root password. This should be self-evident, but can be surprisingly overlooked
during a routine server setup. The password should be at least 8 characters, using a
combination of upper and lowercase letters, numbers and symbols. You should also set
up a password policy that specifies aging, locking, history and complexity requirements
if you are going to use local accounts. In most cases you should disable the root user
entirely and create non-privileged user accounts with sudo access for those who require
elevated rights.

2. network configuration
One of the most basic configurations you’ll need to make is to enable network
connectivity by assigning the server an IP address and hostname. For most servers
you’ll want to use a static IP so clients can always find the resource at the same address.
If your network uses VLANs, consider how isolated the server’s segment is and where it
would best fit. If you don’t use IPv6, turn it off. Set the hostname, domain and DNS server
information. Two or more DNS servers should be used for redundancy and you should
test nslookup to make sure name resolution is working correctly.

3. package management
Presumably you’re setting up your new server for a specific purpose, so make sure you
install whatever packages you might need if they aren’t part of the distribution you’re
using. These could be application packages like PHP, MongoDB, ngnix or supporting
packages like pear. Likewise, any extraneous packages that are installed on your
system should be removed to shrink the server footprint. All of this should be done
through your distribution’s package management solution, such as yum or apt for easier
management down the road.

4. Update installation and configuration
Once you have the right packages installed on your server, you should make sure
everything is updated. Not just the packages you installed, but the kernel and default
packages as well. Unless you have a requirement for a specific version, you should
always use the latest production release to keep your system secure. Usually your
package management solution will deliver the newest supported version. You should
also consider setting up automatic updates within the package management tool if
doing so works for the service(s) you’re hosting on this server.

@UpGuard | UpGuard.com

handbook 10 Steps for Configuring a New Server

4

5. NTP Configuration
Configure your server to sync its time to NTP servers. These could be internal NTP
servers if your environment has those, or external time servers that are available for
anyone. What’s important is to prevent clock drift, where the server’s clock skews
from the actual time. This can cause a lot of problems, including authentication issues
where time skew between the server and the authenticating infrastructure is measured
before granting access. This should be a simple tweak, but it’s a critical bit of reliable
infrastructure.

6. Firewalls and ipTABLES
Depending on your distribution, iptables may already be completely locked down and
require you to open what you need, but regardless of the default config, you should
always take a look at it and make sure it’s set up the way you want. Remember to always
use the principle of least privilege and only open those ports you absolutely need for
the services on that server. If your server is behind a dedicated firewall of some kind,
be sure to deny everything but what’s necessary there as well. Assuming your iptables/
firewall IS restrictive by default, don’t forget to open up what you need for your server
to do its job!

7. Securing SSH
SSH is the main remote access method for Linux distributions and as such should
be properly secured. You should disable root’s ability to SSH in remotely, even if you
disabled the account, so that just in case root gets enabled on the server for some reason
it still will not be exploitable remotely. You can also restrict SSH to certain IP ranges if
you have a fixed set of client IPs that will be connecting. Optionally, you can change the
default SSH port to “obscure” it, but honestly a simple scan will reveal the new open
port to anyone who wants to find it. Finally, you can disable password authentication
altogether and use certificate based authentication to reduce even further the chances
of SSH exploitation.

8. Daemon Configuration
You’ve cleaned up your packages, but it’s also important to set the right applications
to autostart on reboot. Be sure to turn off any daemons you don’t need. One key to a
secure server is reducing the active footprint as much as possible so the only surface
areas available for attack are those required by the application(s). Once this is done,
remaining services should be hardened as much as possible to ensure resiliency.

@UpGuard | UpGuard.com

handbook 10 Steps for Configuring a New Server

5

9. SELINUX and FUrther hardening
If you’ve ever used a Red Hat distro, you might be familiar with SELinux, the kernel
hardening tool that protects the system from various operations. SELinux is great at
protecting against unauthorized use and access of system resources. It’s also great
at breaking applications, so make sure you test your configuration out with SELinux
enabled and use the logs to make sure nothing legitimate is being blocked. Beyond
this, you need to research hardening any applications like MySQL or Apache, as each
one will have a suite of best practices to follow.

10. logging
Finally, you should make sure that the level of logging you need is enabled and that you
have sufficient resources for it. You will end up troubleshooting this server, so do yourself
a favor now and build the logging structure you’ll need to solve problems quickly. Most
software has configurable logging, but you’ll need some trial and error to find the right
balance between not enough information and too much. There are a host of third-party
logging tools that can help with everything from aggregation to visualization, but every
environment needs to be considered for its needs first. Then you can find the tool(s) that
will help you fill them.

@UpGuard | UpGuard.com

handbook 10 Steps for Configuring a New Server

6

conclusion
Each one of these steps can take some time to implement, especially the first time
around. But by establishing a routine of initial server configuration, you can ensure that
new machines in your environment will be resilient. Failure to take any of these steps
can lead to pretty serious consequences if your server is ever the target of an attack.
Following them won’t guarantee safety-- data breaches happen-- but it does make it
far more difficult for malicious actors and will require some degree of skill to overcome.

