
Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 1 of 22

Proven, Practical Tactics for Agile IT Release Management

 A Case Study
© By David W. Larsen

Copyright © 2009 David W. Larsen. All rights reserved.

Permission to copy without fee all or part of this material is granted provided that

(a) copies are not made or distributed for direct commercial advantage through

distribution for profit of materials that are substantially derived from these

materials, (b) the David W. Larsen copyright notice appears, and (c) notice is given

that copying is by permission of David W. Larsen, Solution Partners.

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 2 of 22

Proven, Practical Tactics for Agile IT Release Management – A Case Study

Table of Contents

Proven, Practical Tactics for Agile IT Release Management – A Case Study 3

Overview: ... 3

Summary: ... 3

The Context:... 3

Demographics .. 4

SWOT Analysis ... 4

Conclusion ... 5

Definitions, Roles and Triage .. 6

Overview: ... 6

Core Problem Analysis: ... 6

Definitions.. 7

Triage ... 9

Conclusion ... 10

The Core Solution .. 11

Overview: ... 11

The Intake and Release Planning Cycle - IT ... 14

Intake and Release Planning Cycle – Client .. 15

Conclusion ... 15

Final Quality Control ... 16

Overview: ... 16

Objective Setting:... 16

Quality Gates ... 16

Conclusion ... 18

Lessons Learned... 18

Overview: ... 18

How Agile Was This Work? .. 18

Metrics ... 19

5 Key Lessons Learned .. 22

Conclusion ... 22

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 3 of 22

Proven, Practical Tactics for Agile IT Release Management –
A Case Study

© By David W. Larsen

Overview:

This study will explain how an IT organization delivered a release management process and

results that exceeded its management’s expectations and provided a foundation for continued

success. There are 5 basic sections:

1. How did we get here – THE CONTEXT

2. First solution steps – DEFINITIONS, ROLES AND TRIAGE

3. Intake and Release Planning – THE CORE SOLUTION

4. Production Change Control – FINAL QUALITY CONTROL

5. Metrics and Insights – LESSONS LEARNED

Summary:

Many Information Technology organizations flounder when they are tasked to understand,

organize and implement numerous changes to the system and application software serving their

clients and end customers over a period of several years. This work explains at a detail level the

very practical and common sense framework and processes that successfully conquered the

problem for one corporation and its IT team. How successful was this framework? Frankly, IT

metrics is a notoriously difficult and obscure element to discuss methodically. But this

organization accomplished the following:

 In one year, it increased its client satisfaction ranking from 2.5 to 4.0 on a 5 point scale.

 In one year, it delivered 85% more change requests and project changes into production

than in the prior 12 months.

 The organization exceeded its own stretch targets for throughput by 40% and change

request cycle time by 10%.

 It accomplished these results with no headcount increases and no expenditures for IT

“toolware”.

 It did increase the IT expense budget by 1.8% to cover the extra cost of a single

consultant to instantiate the framework and processes for agile release management.

What was the secret sauce to make these accomplishments possible? The answer requires that

we carefully consider the context for this organization.

The Context:

The company and its IT department can be characterized as follows:

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 4 of 22

Demographics

Company

 Industry – telecommunications – one segment of a very large Regional Bell Operating

Company

 Primary Products – voicemail service and ancillary features

 Consumer base – 4 million consumer accounts with 25% growth forecast

 Total company headcount - about 500 people

 Primary operation – a 24X7 call center of 300+ people selling and servicing consumers

on voicemail products and features

 Financial Results – High Line-of-Business Profit Margins within very large corporate

structure

 Everyone worked in the same building

IT Organization

 IT staff – about 60 – most with 2-10 years of organizational history

 Functionally aligned into – Operations, Project Management and Analysis, System

Development, QA and Help Desk, Configuration Management

 Applications – 7 major home-grown subsystems serving the company’s direct

operations

 HR/Financial/Corporate functions were served by the corporate parent and processes,

with interfaces

 Technology – fairly current languages, operating systems and technical infrastructure

(hardware, network, DBMS)

 Recently installed improvements:

o Software Configuration management tools, staff and processes

 Perceived primary problem – no effective control of changes submitted to production

 Everyone worked on the same floor

SWOT Analysis

The solution(s) would also require recognition of the strengths, weaknesses, opportunities and

threats of the environment to produce an optimum outcome.

Strengths

 Strong and growing revenues

 Company Management – generally very experienced in call center management and

product improvement processes

 IT Management – 80% had 4+ years within this organization and very little churn, only

2 levels of IT management

 Mature and successful IT processes included:

o Project Management

o Quality Assurance Testing

 Several strong IT manager advocates for improved Release Management

 Co-location of IT and its direct clients – the managers of the business functions

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 5 of 22

Weaknesses

 Company managers negotiated private deals to get their change requests and projects

installed “earlier”

 No central clearinghouse for adjudicating departmental requests for IT changes

 No tracking system to account for all change requests and projects demanded and

delivered

 About 325 requests/projects believed to be in play

 A haphazard intake and control/tracking process for “small” change requests

 Programmers could independently implement an application change to production

 No single point of contact/communications between the IT organization for each small

change request

 Current status and target implementation date of any single change request difficult to

obtain/pin down

 IT operations changes were totally independent of organizational change control and

viewed as disruptive

Opportunities

 A new chance to consolidate and share information about everything on IT’s plate in a

single place

 A chance to leverage the existing knowledge and maturity of the IT staff

 A chance to reduce the start/stop nature of IT work due to competing and vociferous

input from company managers

 A chance to incorporate IT infrastructure changes from Operations in a planned manner

Threats

 Software developers desired new toolware – not more management processes

 Company business managers enjoyed calling the shots directly with programming

resources

 Tension between IT managers on what were the best paths for organizational

improvement

 IT had failed on its first attempt the prior year at Change Control and Release

Management processes

 Consultants rarely added value

Conclusion

The CIO, facing this situation, agreed to allow the Manager for Project Management and

Analysis to contract for a resource to implement Release Management (Version 2). The CIO

believed that she could deliver better results to her constituency by implementing change in a

series of well-understood application package upgrades at regular intervals. She also wanted to

take back to her peers a plan that they could understand and use to directly influence the order

of implementation for their changes. The Manager of PM retained me as the Release Manager

with the mandate to institute the processes and controls needed, and by engaging all IT staff and

VPs in business departments as needed for success.

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 6 of 22

Definitions, Roles and Triage

Overview:

What was the secret sauce that made Release Management a success? The answer begins with

core problem analysis, proposed solutions and a triage effort. These efforts were concluded

within the first six week of the consulting engagement, setting the stage for new release

management controls.

Core Problem Analysis:

The company and its IT department clearly wanted a solution implemented that avoided

historical mistakes. As a retained consultant, I conducted a series of one-on-one interviews,

examined remnants of Change Control documents from a predecessor, investigated commercial

off-the-shelf packages for both processes and operational tracking, and discovered the following

core problems.

Problem #1 – What Trees are in this Forest?

A substantial source of confusion and discussion involved defining the scope of what things

should be controlled under the umbrella of Release Management and Change Control. There

were divergent opinions about whether to include/exclude major projects, infrastructure changes

from operations, bug fixes, hardware changes, Customer service changes, emergency patches,

etc. As with most debates within IT, the stakeholders frequently used similar terms to mean

very different things. Very specific language needed to be written, socialized and implemented

that reduced this ambiguity and confusion.

Problem #2 – Who is Responsible for What?

Projects were very clearly controlled end-to-end by Project Managers, and at any given time the

4 PMs would have 2-5 projects underway. These generally covered scope for multiple

applications and multiple person-months of programming effort. Beyond that good start, Client

Change Requests, Bug Fixes, Operations infrastructure changes, Customer service changes

(move/update/fix my workstation) and emergency patches had no one role identified for control,

communications and accountability throughout their life span. The IT assembly line for such

work was disjointed at best and lacked fundamental structure. The role of Release Manager

itself was undefined, with various stakeholders holding unique viewpoints on the scope of the

assignment.

Problem #3 – How To Introduce Order Upon Chaos?

This was a very critical concern, as the inflow of new requests from the business could not be

halted, due to political and practical matters. If the organization knew tactically where it stood

on Monday for every item, by Wednesday the landscape had changed, and priorities for older

work were being adjusted on-the-fly, either overtly or covertly by business leadership.

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 7 of 22

Problem #4 – How Frequently Should We Release Change Packages?

A practical concern was whether IT should embark on weekly, biweekly, monthly, quarterly or

other frequency of planned production software change. The frequency of change would end up

driving the timing of the real-world series of gates and meetings necessary for control and

adjustment.

The first solution proposal entailed purchasing a complete software application and

documentation package from a market leader that promised to cover the full scope of their

interests. The alternative proposal was founded upon a low level of automation, and a high

degree of inter-personal collaboration to achieve similar ends.

The rest, they say, is “Scrum/Agile” history. To learn what it really takes, our story continues

next with DEFINITIONS, ROLES AND TRIAGE.

Definitions

I will remark on Definitions first, because the management team needed to ground itself and

communicate in a consistent fashion about the key objects and controls with Release

Management processes.

Problem #1 - What Trees are in this Forest? - Scope

We took the perspective that anything that is planned to change the configuration of the

production computing environment within the controlled data center and network configurations

was subject to Release Management processes. As a result, we included:

 Application software changes requested by clients or from IT itself (re-factoring, etc)

 Application software fixes that were “not immediately damaging” clients’ business

 Each software change package from projects (projects typically had more than one

release package over several months)

 Network or server infrastructure upgrades (OS, DBMS, middleware, hardware, etc.).

We excluded from Release Management processes:

 Customer Service requests (fix/move my workstation, office moves, etc)

 Emergency production software application fixes (fix it now)

This last exclusion was troublesome, but necessary. We assigned total responsibility for

managing the emergency fixes to the Software Development Manager, and set an overall target

to keep these to fewer than 5% of the total changes made into production. (We tracked the

numbers, but didn’t stand in the way).

The practical outcome of these agreements was that each individual thing included in Release

Management was a Change Request, to be initiated with a simple form. Each would be

assigned a unique Number (and key attributes) and controlled in immediate form by an Excel

spreadsheet updated and distributed by the Release Manager.

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 8 of 22

Problem #2 – Who is Responsible for What? -- Roles

Single Point of Contact (SPOC)

The organization had a good model of behavior and accountability for projects, but there was

disjointed accountability for all the other Change Request types. To solve this, we defined a

role called the Single Point of Contact (SPOC). The role was accountable for conveying the

requirements, correct status of IT progress, and sponsoring the Change Request for its ultimate

release to production. The SPOC was individually accountable for telling our clients the timing

and impact of the implementation of a change, so that our clients were adequately prepped for a

release. The assignments to this role were expected to last for the duration of the Change

Request, as opposed to the previous pattern of shifting responsibility. As a practical matter, the

SPOC assignments for 75% of the Change Requests fell into the Project Manager/Business

Analysis team.

Architecture Review Board (ARB)

The IT organization had a defined group called the Architecture Review Board (ARB) which

convened to assess the technical and organizational impact and risks of major changes to the

environment. This group consisted of the 5 IT Managers, the Applications Architect and the

Operations Architect, and occasionally the CIO. As part of our definitional work it was

determined that this group would exercise an expanded role – to quickly and routinely review

each incoming change request. The Release Manager was added to the Board. This board was

the “neck of the funnel” for all new items and through discussion, they determined very rough

size, priority, and impacts. The ARB also made the specific assignment of a SPOC to each new

Change Request. More on the role of the ARB is covered in the Intake and Release Planning

section.

Release Planning Group (RPG)

The primary organizational element that needed to be set in place was a new group titled

Release Planning. This team, facilitated by the Release Manager, met with great discipline and

regularity to organize, re-organize, and commit to a comprehensive, concrete order of

implementation for all Change Requests. While this sounds straightforward on paper,

remember that the context for this role was to organize an average of 125 Change Requests into

a series of planned releases – and do this repeatedly as new things got added each week. This

was a puzzle with ever-moving parts. The Release Planning Group consisted of the 5 IT

Managers and the Release Manager. The Release Manager published the current Release

Schedule as an outcome of each of the group’s meetings.

Change Control Board (CCB)

This group was chaired by the Configuration Management leader, and had the responsibility to

review and approve or defer the completed Change Requests for implementation in production.

The Operations Manager and QA Manager played strong roles within this forum. The SPOCs

for each Change Request were questioned for preparedness items, including the advance

notification of the client communities. The CCB made a consensus decision on each Change

Request and the outcome of these decisions allowed the Release Manager to lead the

Configuration Management Team to prepare the scripts and code packages for production

upgrades.

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 9 of 22

Problem #3 – How To Introduce Order Upon Chaos?—Business Cycle

This fundamental problem afflicts all business organizations. Customer requirements constantly

change in nature, new ones are added, and old ones wither yet refuse to die. Progress on the

production line in IT is swift, stuttering, under-resourced, or overwhelmed. Managers

independently made decisions from their own perspective of the best interests of the company.

Frequency of change was sporadic.

To introduce order, the Release Manager defined a disciplined business cycle for Release

Management Processes. The business cycle was a repetitive set of scheduled meetings of the

Architectural Review Board, Release Planning Group, and Change Control Board that would be

executed with defined agendas and deliverables, without failure, and with full participation of

the people in their assigned roles. This business cycle would commence as soon as a triage of

the Change Request queue of work could be completed. Customer feedback loops were defined

for each stage of the process. Triage was a critical first step and is discussed further below.

The plan for this business cycle was presented to the CIO. She approved the plan for this

business cycle, committed her management team to its principles, and successfully sold the plan

to her peers in the company.

Problem #4 – How Frequently Should We Release Change Packages?—
Solution

The debate on this was not difficult – once we had made the earlier decisions to include

operations change requests and exclude the emergency software fixes. We settled on a 2-week

release change cycle. Our internal customers were already seeing changes made (or attempted)

weekly with mid-week exceptions and surprises, so this could have been viewed as a step back

by IT. However, the IT managers saw many shortcomings with more rapid attempts at change

and were far more confident that the company would be well-served on a 2-week cycle.

Specifically, change requests would be bundled together into a Release Change Package for

implementation on alternate Thursday evenings. Our fallback position, if the Release did not

succeed on Thursday night, would be to switch to a Friday evening implementation.

Triage

At this stage, the CIO evaluated how quickly all this good foundation work could be put into

operation. As Release Manager, I advocated for a process solution supported by an industrial-

strength commercial application that could be leveraged toward portfolio management, with

many people updating their component parts, and project-specific support and tracking.

However, finding, funding, purchasing and implementing such a baseline tool would require an

estimated 3-4 months under ideal conditions. The CIO opted to proceed with the alternative

“low-tech” approach for her organization. The mandate was to “find a way” to implement the

essential processes by using the lowest-budget approach.

The mandate was daunting. The prior “Change Coordinator” person had worked from a Change

Control log in Excel that had fallen into disuse. The root causes for that condition appeared to

be that the information could never be kept current, plus it only covered some of the Change

Requests. No one had previously been assigned the responsibility to actual know and

communicate the status of “small” change requests – of which there were several hundred. The

log also attempted to store a lot of interim dates on small changes, and it duplicated interim

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 10 of 22

dates that Project Managers maintained in MSProject on regular projects. The SPOC role had

not been defined. As far as we could tell, 125 Change Requests were “open” – meaning

submitted by clients and not yet completed. That number fluctuated each week as new ones got

added and some got finished, but no one was certain of the status of each item.

It seems appropriate to define the term triage (courtesy of dictionary.com)

–noun

1. the process of sorting victims, as of a battle or disaster, to determine
medical priority in order to increase the number of survivors.

2. the determination of priorities for action in an emergency.

The IT managers knew we couldn’t cope much longer with incorrect information about all the

victims (Change Requests) that were littering our battlefield. As Release Manager, I asked them

to devote the resources necessary to obtain a current, accurate view of the following for each

Change Request:

1. Change Request Number

2. Customer Name

3. Change Request Label (very short description)

4. First Requested Date

5. Status (Open, Completed, Being Worked, Cancelled, or Duplicate) (if completed,

wanted a completion date)

6. Target Release Date (Not Available was OK)

7. SPOC Name

I was responsible for facilitating the triage process. This primarily consisted of some very long

all-manager meetings, publishing many versions of a new Release/Change Request log in Excel,

assigning segments of the list to the most knowledgeable workers for update, and numerous

interventions. The sorting process consisted of IT managers agreeing on an initial High,

Medium or Low priority for an “early” Release Target per Change Request. Customer VPs

were also polled on their priority settings for Change Requests. The process was declared

“finished” in 3 weeks. We achieved a stable state of Change Request information in the log and

were ready to begin Release Management processes and the business cycle for control.

Conclusion

So at the end of this 6 week period, we had the following:

 A business cycle for gates/control meetings

 A set of definitions of work objects, deliverables, roles and processes

 A reviewed, organized list of work

 Understanding between the CIO and VPs on how the new processes should work

The saga of Scrum/Agile IT Release Management continues with THE CORE SOLUTION.

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 11 of 22

The Core Solution

Overview:

What was the secret sauce that made Release Management processes a success? We thought we

had taken the right first steps, but hadn’t executed anything, really. The secret sauce begins

with three foundation ingredients or elements – a paradigm shift, visualizing the whole problem

domain, and knowledgeable collaboration.

Paradigm Shift – From Resource Balancing to IT Hydraulics and Kanban

The CIO and others initially assumed that the path to improved productivity would be an

outcome of matching forecasted demand for service and forecasted supply (essentially of

programming and QA staff), enabled by capturing a lot of size and capacity metrics, personal

vacations, hours spent on work in progress, etc. In simple terms, each change request would be

estimated (repeatedly) for hours of remaining effort from each source group or individual, run

through a number cruncher that was time-sensitive, and out would come a resource-balanced

schedule of releases with their associated change requests. Let’s call this the MSProject model

for short. In theory this works for standard parts and production lines, but the model fails

miserably in the face of human nature, software craft, and changing business priorities and

demands.

The first shift was to recognize that the IT environment behaved according to the principles of

hydraulics. You may refer to the following graphic for this discussion:

PR
O

JEC
T C

R
s

5/14

8 CRS

5/28

17 CRs

M
AR

KETIN
G

 C
R

s

C
ALL C

EN
TER

 C
R

s

IT & IT O
PS C

R
s

EN
G

IN
EER

IN
G

 C
R

s

C
EO

 & FIN
AN

C
E

C
R

s

6/25

24 CRs

6/11

12 CRS

IT HYDRAULICS

Change Requests and Releases

© David W. Larsen

100 – 200 CRs in the Funnel

IT W
ork C

apacity (C
R

 Flow
)

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 12 of 22

We had a funnel or holding tank for Projects and Change Requests representing customer

demand that was fed via “fire hoses” from the department heads. There was no limit on how

many CRs could be pushed through a fire hose in a time period. The holding tank consisted of

the 100-200 change request “forms” for the year of this case study.

Exiting the funnel was a pipeline containing a continuous stream of assigned work. The IT

work capacity was a pretty steady state of 60 people working full time each week. Of these,

about 40 were software developers and QA staff. These resources could work on any of the

change requests from the holding tank, and it was management’s job to direct them to work

productively and collectively on the most important ones. Some change requests could be

fulfilled with mere hours of effort. Many took person-weeks and person-months across IT

organizational lines. Also, software developers operated with a limiting principle that they

would not have more than 2 open “code branches” for an application. During this case study,

IT software development capacity (pipeline) was held constant by a fixed budget, fixed

headcount, and existing toolware.

The hydraulics system pipeline had relief valves – called releases that were scheduled for every

2 weeks. The system would thus “flush out” a variable number of change requests into

production, preventing an overflow of the holding tank. Adding additional pressure from the

holding tank above could result in some short-term flow improvements, but excess pressure (or

push) invariably resulted in pipeline cracks and disruptive failures. Another primary limiting

consideration is that only certain people could work productively on certain CRs due to

application or toolware expertise. A prime example was that only 2 programmers knew how to

implement change using Oracle Forms software, and had the appropriate licenses and training.

There were a number of similar cases defining who worked on what. IT was teetering on the

boundaries of failure because an important determinant of the success of production scheduling

based on "pushing" the demand is the quality of the demand forecast which can receive such

"push".

So IT management reconsidered its position regarding a “push” form of scheduling. In IT’s

environment we did not have standard production line equivalent inputs and outputs. As a

consultant, I introduced a pull-based approach, based on my exposure to Kanban theories. To

quote from an encyclopedia “Kanban, by contrast(to push), is part of an approach of receiving

the "pull" from the demand. Therefore the supply, or production is determined according to the

actual demand of the customers. In contexts where supply time is lengthy and demand is

difficult to forecast, the best one can do is to respond quickly to observed demand.”
1
 The

theory sounded better than pushing stuff toward the programmers, but how do you pull it off?

Visualizing the Whole Problem Domain

The second ingredient for the secret sauce was absolutely crucial. We found that during the

triage effort (working from Excel spreadsheets of 300 items and Change Request form

documents) that it was literally impossible to use the many lists and pieces of paper, on

projectors and laptops, and simultaneously make priority decisions in context of the whole set.

It was a condition of too much information, too many people looking different places at once,

1
 http://en.wikipedia.org/wiki/Kanban

http://en.wikipedia.org/wiki/Push-Pull_strategy

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 13 of 22

etc. I was failing to facilitate the priority-setting and release-bundling effort. Then we got

really Scrum/Agile in technique. I decided to transform our favorite conference room into a

“Visual Decision Space” using:

1. One colored 4X6 index card for each of the 125+ change requests – all info on a card

was readable from 15 feet away

2. One 8’High X 15’Wide fabric-covered wall that allowed me to use stickpins to tack up

the cards, and easily move them from spot to spot

3. Six Vertical columns on the wall each representing a 2-week release period

4. One overflow portion of the wall for CRs not assigned to a release period.

The puzzle of what should be positioned in each release could now be readily represented and

dynamically manipulated by moving the cards from column to column or put in the overflow

(funnel). Everyone in the room could simultaneously see and evaluate each move in context of

the whole wall of CRs. Each manager could consider in real time how a move would affect the

resources and throughput of their group in the context of 6 release cycles. All the lightbulbs

flashed on at once.

This concept of a planning/production storyboard was certainly not new in the literature of

production management, but the adaptation developed within our IT department in 1999

certainly preceded many of the authored works on enterprise requirements managements of the

early Agile Alliance advocates. The Agile Manifesto itself can be dated around February 2001.

Practitioners of Scrum techniques had published some good works on work planning, but they

did not have widespread popularity at this juncture. With this second ingredient of “THE

WALL” in place, and a very large DO NOT TOUCH sign on the wall of cards, the secret sauce

was nearly complete. Here is a photo of the board itself:

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 14 of 22

Knowledgeable Collaboration – Making It Happen

The third ingredient of the sauce was the IT management staff’s willingness and ability to

collaborate on making decisions in an informed and friendly way. The wall of index cards

provided the puzzle space to let managers propose how they could arrange the priority work in

packages that made sense given their resource constraints and track records. No longer were we

trying to sum up work estimates and do math problems and forecasts. Instead we could pick out

3 yellow cards from the overflow and say they should go together in the third release because

they “hit the same code” or collectively made business sense for the client. Instead of agonizing

over potentially crushing any one bottleneck, when a manager felt their unit had reached their

max effort for a release, all managers would quickly adjust and move on. Sure, a lot of

guesswork was involved, but we also knew if we were over- or under-committed in a release,

our staff would read the wall and point out some possible adjustments that we could make in the

next planning session. The process of rearranging THE WALL took place every week with all 5

IT managers, and took one hour or less, even when 10-20 new CRs arrived from the customer

departments that week.

By blending knowledgeable collaboration with a paradigm shift to pull-based planning and a

visual space for the whole problem domain, the secret sauce was ready to apply!

The Intake and Release Planning Cycle - IT

People abhor unproductive business meetings.

People love solving problems collectively.

Everyone likes efficiency.

Simply put, our intake and release planning cycle was a weekly cycle that went like this:

1. Every day the Release Manager would receive zero to many Change Requests on

emailed forms.

2. That same day, the Release Manager assigned CR numbers, updated an Excel-based

Change Request Log, acknowledged the author, and routed the CR form to the members

of the Architectural Review Board.

3. Throughout the week it was the job of the Applications Architect and the Operations

Architect to do a first cut investigation and resource estimate of these new CRs for use in

an ARB meeting.

4. On Tuesday mornings at 9AM the Architecture Review Board met to consider the CRs

submitted from the previous 5 business days, hear from the Architects, discuss the

client’s priorities, assess risks, and assign a SPOC for each CR. The meeting ended

faithfully on or before 10AM.

5. Tuesday between 10 and 10:30, the Release Manager made up new CR index cards for

the wall, choosing the right color (colors were unique to each application area, plus some

special colors for projects and IT internal stuff).

6. Tuesdays at 10:30AM, the members of the Release Planning Group convened in the

conference room holding THE WALL of CR index cards. The first order of business

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 15 of 22

was for the Release Manager to ask for an immediate consensus on where each new CR

should be placed. The default position was in the holding tank, but some could quickly

be slotted for a pending release package. As a second order of business, the RPG would

then begin adjusting the content of the six release columns on the wall, based on known

problems or opportunities. Members would propose moving cards back and forth,

discuss what they thought, make a decision and move on.

7. By 11:20 the Release Manager would call a halt to the discussions and do a “session

wrap”. It was common to see 15 to 30 cards change position in the course of a single

meeting. No one kept any minutes, but the new WALL clearly showed the Release Plan

for 6 more Releases.

8. By 1:00PM on Tuesday, the Release Manager made all corresponding Release date

changes in the Excel file (Change Request Log/Release Plan) and routed it to the entire

IT department and the business VPs.

9. By 5:00PM on Tuesday, the individual new CR authors were emailed on the status of

their submitted requests. For “older” CRs, the assigned SPOCs were responsible for

communicating any Release date adjustments.

Intake and Release Planning Cycle – Client

The commitment to keep the customers apprised of the status or disposition of the requests took

several forms. As noted above, on every Tuesday the Release Plan was distributed as an Excel

document to the VPs of the organization. All the new CRs submitted that week also had the

individual feedback emails. The second part of the client cycle was a monthly review meeting

scheduled with each VP, with the Project Management Manager and Release Manager

attending. This meeting was facilitated with Change Request Log (Excel) reports which

exposed solely the departments’ own Change Requests. The goal of this meeting was to clearly

identify that department’s current “Top 5” Change Requests. Month to month these items

changed with completion of work and shifting business interests. In turn, the Release Manager

updated the Change Request Log and pasted a “Top 5 dot” on those CR index cards on THE

WALL. This proved to be a great way to let all IT managers visualize the top priority work

during Release Planning sessions. These monthly client meetings were frequently held in the

conference room where the VPs could easily see the scope of the IT workload and where their

own CRs were queued up.

Conclusion

The Intake and Release Planning cycle operated with friendly precision. People did not miss

meetings. Everyone actively participated within their role because it was efficient. The Release

Manager performed all record keeping, and was acknowledged for the accuracy and timeliness

of the Change Request Log as a “routable” version of THE WALL. But whenever anyone in

the organization wanted a comprehensive appreciation of the whole business, they would sneak

into the conference room and read THE WALL. The CIO would occasionally bring in the

President to demonstrate where everything stood. This was truly an information radiator (thank

you for the term, Alistair Cockburn).

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 16 of 22

Final Quality Control

Overview:

It has been said that the Plan is nothing, Execution is everything. No Release Management

process is complete without the correct steps to implement changes into IT production safely,

securely and with acceptance by the client community. The IT organization still had some work

to do in this area at the beginning of the consulting engagement. Here is how we improved,

enhanced, and succeeded in the final quality control and implementation steps of releases.

Objective Setting:

In the first weeks of the consulting engagement I was encouraged by the progress already made

by the Configuration Management team in beginning to exert discipline on what changes got

implemented in production and how source and object code management tools (Clearcase) were

being applied to support developers. What I didn’t find were any metrics or objectives for these

processes. Were they being applied with great consistency or not? How could targets in this

area be set? The best processes in the world must be executed successfully. Based on

interviews, it seemed that about 80% of the changes that went into production were going

through the Configuration Management team, and perhaps 20% were still being done

“programmer-direct”. A lot of reasons (excuses) were offered.

Given this backdrop, I prompted the IT management team to set a new goal for the disciplined

configuration-managed deployment of software to production at 95% of the deployments.

Setting this higher objective allowed for some middle-of-the-night direct patches for emergency

fixes, but IT made a resolute commitment to keep the source and object code integrity through

quality-driven deployments. The results were pretty remarkable. The new objective itself

caused behavioral changes in the programming staff, better collaboration with the configuration

management team, and the outcome could actually be monitored and reported. In the course of

10 months, 98% of the deployments were done through the configuration management team.

The Software Development Manager insisted that even “emergency” changes in his total control

should follow the better path to production.

Quality Gates

There were 3 principle quality gates that improved during the engagement. They were:

Passed QC Testing

The Quality Control group in IT had a strong leader and pretty talented and experienced testers.

They had a firm grip on their processes and knew what they were doing. Viewed as the end of

the chain, they often got the short end of the stick for the proper timeframes to do their job.

Their work got supported and strengthened by three key things:

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 17 of 22

1. The QC group was able to insist that any code they were to test had to flow through the

configuration management team first. This was great discipline to apply.

2. The QA Manager attended all the Release Planning meetings and added a key piece of

information on all CRs slated for the next release. She would place a green dot on all

CRs that had passed the QC steps, denoting her team’s signoff or not. Also, she would

place an orange dot on any CR that was late in getting their code into QA, based on

project or CR-specific target dates. “Dot-placing” was done immediately prior to the

Tuesday 10:30AM RPG meetings.

3. During the RPG, the IT managers held focused discussions about the quality state of

CRs and often made decisions to defer items to the next release or apply more resources

to get a “Green-Dot” status. The QA manager wielded a lot of power in a short amount

of time because the conditions were correct for these discussions.

Passed Change Control Board (Checklist)

As a reminder, earlier we stated about the CCB:

“This group was chaired by the Configuration Management leader, and had the responsibility to

review and approve or defer the completed Change Requests for implementation in production.

The Operations Manager and QA Manager played strong roles within this forum. The SPOCs

for each Change Request were questioned for preparedness items, including the advance

notification of the client communities. The CCB made a consensus decision on each Change

Request and the outcome of these decisions allowed the Configuration Management Team to

prepare the scripts and code packages for production upgrades.”

At the onset of the engagement the Change Control Board met infrequently (mostly to review

implementation of only major projects). With a firm commitment to release production changes

every 2 weeks, this role and the execution of its duties was firmly reinforced. A standard

agenda was prepared and meetings were facilitated by the Release Manager. As Release

Manager, I also proposed that the SPOC present answers to a checklist of items for every CR

and to bring the checklist(s) to the CCB to aid in its decision. The checklist approach was

useful and helped keep the key discussions focused. If only 2 CRs were being proposed, these

meetings were mercifully short. If we had 15-20 CRs in a release, the meeting was suitably

extended, but we never had a single meeting exceed 90 minutes.

As a practical matter, the CCB meetings were conducted on alternate Wednesday afternoons,

just prior to the Releases done Thursday night. That left the right amount of time for the

Configuration Management team to do its staging job effectively. On rare occasions, the CCB

agreed to grant a SPOC (and the developers) another 8 hours to “get ready” for CCB approval,

but these cases were true exceptions to the rule.

Passed Deployment Testing

We mentioned previously that the QC group included 2 functions – software testing and also

help desk/customer support. The 3 people assigned to the Help Desk were extremely

knowledgeable in the client’s use of applications and were always assigned as the post-

deployment testers for application changes. They would know if anything didn’t work or

“looked funny” and could order a rollback to the previous production code. The Help Desk staff

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 18 of 22

also covered the non-prime-time shifts of the Call Center to resolve problems. They didn’t want

bad code going into production.

We enhanced the Deployment Testing process in a major way with the simple act of scheduling

releases at 2 week intervals. The previous practice had been for developers or project managers

to individually negotiate with the QA manager and team for releases on any night of the week or

on weekends. The Help Desk wanted to be helpful, but was forsaking any semblance of a real

life with the requests to have production deployments and testing happening 2 to 3 times per

week.

We also made a smart move by scheduling deployments on Thursday evenings. This allowed

the Help Desk to work late on alternate Thursdays, but also “earn” Friday afternoons off for a

long weekend. Simple way to build morale and improve execution! This scheduling pattern

also had benefits for the client community as the routine was familiar and consistent. In

selected cases, they would perform end-user testing as well on Thursday evenings.

One oddity I should mention. I was the Release Manager, but I played a very hands-off role on

the practical decisions needed on Thursday night deployments. Our Help Desk Team was very

accountable for the benefit of their users and made all the decisions you typically encounter on

busted deployments or smoke tests of production. This was an outstanding example of a self-

managing team.

Conclusion

These improvements in the Final Quality Control steps built a lot of credibility for the IT

organization. We saw a marked decrease in the number of Change Requests that failed the

Deployment Testing gate and a marked upswing in customer confidence in implementation of

change. We also found ourselves much more capable of backing out, recovering and then re-

executing a configuration-managed deployment when necessary.

To summarize the improvements achieved, our story continues with LESSONS LEARNED.

Lessons Learned

Overview:

This case study is entitled Proven, Practical Tactics for Agile IT Release Management. Now is

the time to assess how “Agile” were we? This Release Management process was implemented

in 1999, without benefit of access to the thoughts and ideas published following the Agile

Manifesto. We also have some basic metrics to consider and explain, and thoughts on the

lessons along the road.

How Agile Was This Work?

I willingly concede that there are experts in the Agile community who are far better qualified to

render an opinion on how closely this work conforms to the principles of Agile Software

development and the complementary Scrum approaches to Product and Enterprise Requirements

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 19 of 22

management. On the one hand this was not a discussion of software development. The Agile

Manifesto states

“We are uncovering ways of developing software by doing it and helping others do it. Through

this work we have come to value:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan”
2

Our process work was very steadfast, disciplined and critical to success. Our interactions were

frequent and very focused. We used plain cheap tools, but exceedingly well. Individuals – we

used everyone’s strengths to succeed. I’d give us a grade of a B on item 1.

The Release Management process itself took virtually no notice of the interim steps of software

development. In fact we stripped out tracking of interim dates, then put back in the importance

of starting QA. The only thing we worried about was production-ready software. I’d give us a

grade of A.

On customer collaboration, we certainly improved communications about what was being

worked on (and what wasn’t also was obvious). We definitely showed the VPs that we were

trying to slide their Top 5 requests in at the earliest juncture in the overall plan. The Release

Management process did not operate at the level of the software’s requirements, design and

functionality. In essence we just did a great job of clearly starting and stopping work. I’d give

us a B+ on item 3.

This process excelled at responding to change over following a plan. Every week we would

build a firm Release Schedule for 6 Releases, and the very next week we would re-work the

whole thing due to circumstances and reality. We did that with clarity, collaboration,

understanding and high levels of communication. I’d give us an A+ here.

The basic work planning and release business cycles were closely aligned with the Scrum

techniques advocated in the industry literature of the time by Ken Schwaber, Mike Cohn, and

others, but the basic pattern of software development at this organization remained a waterfall,

with at best an iterative approach to meeting clients requirements.

Metrics

I will state my personal opinion that 99% of the published material regarding IT processes lacks

meaningful statistical indicators. There is a lot of “crowing” about methods and tools, but not a

lot of believable concrete information. Also, keep in mind that IT headcounts were held

constant for the periods in question.

2
 Manifesto for Agile Software Development © 2001 at http://agilemanifesto.org, 17 signatories

http://agilemanifesto.org/

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 20 of 22

Here is a sample of the data and metrics we collected:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

A B C D

Year End 1998 Year End 1999 Improvement

Customer Satisfaction - IT 2.5 4.0 60.0%

4/1/98 - 3/31/99 4/1/99 - 3/31/2000

CRs Completed or Cancelled 210 373

(including Project Releases) 222 410 84.7%

4/1/98 - 3/31/99 4/1/99 - 3/31/2000

Major Projects Completed 12 18 50.0%

As Of 5/31/1999 As Of 5/31/2000

Average Age of CR Backlog 97 days 154 days -59%

As Of 5/31/1999 As Of 5/31/2000

Avg Cycle Time-Completed CRs 85 days 76 Days 10.6%

As Of 5/31/1999 As Of 5/31/2000

Size of CR Backlog 118 111 5.9%

Release Management Selected Metrics

Customer Satisfaction – IT

The CIO conducted a very simple poll of the senior managers in the organization each year,

asking for an overall degree of satisfaction with the IT performance for the prior year. On a

scale of 1 to 5, the 10 managers selected from Very Unsatisfactory (1) to Outstanding (5). This

simple scoring did not differentiate between performance in Operations, or on Projects or on

implementing Change Requests. It was the simple view of their Overall Satisfaction. We

believe that the efforts on release management were a major factor in raising the score from the

prior year. Another major win was that the IT organization turned the corner on the Year 2000

without mishaps.

Change Requests Completed or Cancelled

The consulting engagement began in early April of 1999. At that point in time the definition of

Change Requests did not include production software changes caused by major projects. Using

the new definitions of what Release Management considered an in-scope Change Request, the

base of Change Requests Completed was expanded for the earlier time period so that a fair

comparison can be drawn. The IT organization, using Release Management, dispatched about

85% more Change Requests over 12 months.

As a parallel metrics observation, the IT group set annual targets for completing change

requests. Their goal for the year 1999 was 240 (this was considered an aggressive target at the

time). On a calendar year basis, IT completed 336 Change Requests in 1999.

Major Projects Completed

In case people wonder if IT just re-directed effort to do more change requests, thus short-

changing the efforts on projects, the numbers for major projects are shown. We do not know

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 21 of 22

what % of total resources were used year over year, as project-hour accounting was weak.

Given that the Year 2000 Project was a major endeavor, I offer that it is safe to assume that

there was no disproportionate shift of resources that favored better Change Request results.

Average Age of Change Request Backlog

We decided to consider how well we were doing in terms of reducing the amount of time the

clients were waiting to get their Change Requests taken care of. For the period in question, we

were amazed at first to see the age of the backlog increase dramatically! On reflection, we

realized that our data proved that lower-priority change requests were always being bumped

back in their potential implementation, so the department could handle the new incoming higher

priority changes. We could never empty the funnel, we could only work on the most important

stuff first.

Average Cycle Time of Completed Change Requests

We measured the overall turnaround on items that were being completed and saw that it was

trending favorably – a 10% reduction in “Wait Time” as seen by the user community. While

this was not a targeted metric, we had a baseline that would be interesting to watch.

Size of Change Request Backlog

In a similar vein, we kept an eye on the total change requests not yet completed. We saw minor

fluctuations, but the client community was always submitting more improvements. As a very

general statement, we always had about 3 months of work capacity either as work in process

(WIP) or requested, but not WIP. There was no budgetary chargeback mechanism from the IT

department to the VPs, so asking for more IT work had no direct consequences for them.

Proven, Practical Tactics for Agile IT Release Management – A Case Study ©David W. Larsen Page 22 of 22

5 Key Lessons Learned

1. First and foremost, the direct investment made in Release Management implementation

brought better than expected results for the stakeholders.

2. I was amazed and delighted to see the Wall of Index Cards morph over time to be a more

elaborate information radiator for the organization. One example was the addition of

colored dots to the cards for Top 5 and also QC status. We also got tricky with

positioning cards above and below certain horizontal lines to convey new information.

We also started to display the thermometer of completed change requests versus the

annual target (it was uplifting). There is a lot of truth to the adage that you learned

everything you need to know in kindergarten…..

3. The solutions we applied were just about perfect for a collocated organization with the

configuration management and QC processes in place and an organizational

commitment to release management.

4. The CIO, seeing that the process was successfully embedded, at the end of 1999 asked

the consultant to undertake 2 items:

a. Do a fresh study of the commercial software market for supporting tools in the

Release Management arena – none were found that could match the team

effectiveness we achieved with cards on a wall.

b. Prepare a transition plan to bring in an internal manager for the ongoing position

of Release Manager. It took over 4 months to locate and train a replacement

candidate for the permanent position. The first chosen candidate just couldn’t

keep the pace of detailed item management that was required.

5. If this problem had involved 600 Change Requests, it might not have worked at all. As

long as we had fewer than 200, we could handle it on one wall and you could read every

card from about 15 feet away. There are limits to this media/storyboard approach.

Conclusion

There is a huge amount of value to creating a Visual Decision board that covers the whole

problem for an organization. This general finding can be applied in a low-cost manner to many

problems. In my research to find an adequate software package solution for Release

Management, all products stumbled on the problem of scale on a 21” computer monitor. To this

day, the tenth anniversary of this endeavor, only very sophisticated hardware systems and

conference room environments begin to match THE WALL and the practices we used. I smile

each time I see a modern spy movie, or “24” or “CSI Miami” characters dazzle the audience

with technology for the virtual space, index card objects and puzzle manipulation approach, It

doesn’t have to be rocket science.

If you would like to contact me to discuss down-to-earth process improvement in your

organization, email dwlarsen1946@gmail.com

mailto:dwlarsen1946@gmail.com

