

Tactics for Implementing Test
Automation for Legacy Code

DevOps Enterprise Forum

IT Revolution
Portland, Oregon

Tactics for Implementing Test Automation for Legacy Code

Copyright © 2015 IT Revolution

All rights reserved. No part of this book may be reproduced in any form without
written permission from IT Revolution.

IT Revolution
Portland, Oregon
info@itrevolution.net

For quantity purchases by corporations, associations, and others, please con-
tact the publisher at orders@itrevolution.net.

Cover design by Brian David Smith and Mammoth Collective.
Interior layout generated by O’Reilly Atlas.

mailto:info@itrevolution.net
mailto:orders@itrevolution.net

Table of Contents

Preface v

Introduction vii

CHAPTER 1: Introducing Fictitious Company with a Large Legacy Codebase 9

CHAPTER 2: Building a Case: Justification 13

CHAPTER 3: Objections 23

CHAPTER 4: Tactic Details 31

CHAPTER 5: The Ask 41

Resources 43

Authors and Contributors 45

Acknowledgments 47

iii

Preface

The DevOps Enterprise Forum, facilitated by IT Revolution, brought together
50 technology leaders and thinkers in the DevOps Enterprise community for
three days in Portland, Oregon in May 2015, with the goal of organizing in to
task teams and creating written guidance on the best-known methods for over-
coming the top obstacles in the DevOps Enterprise community.

We tackled the five key areas identified by the community at the 2014 De-
vOps Enterprise Summit:

• Better strategies and tactics for creating automated tests for legacy appli-
cations

• Addressing culture and leadership aspects during transforming
• Top approaches to organizational design, roles and responsibilities
• Information security and compliance practices
• Identifying metrics to best improve performance with DevOps initiatives.

For three days, we broke into groups based on each of the key areas and set
to work, choosing teams, sometimes switching between teams, collaborating,
sharing, arguing… and writing.

After the Forum concluded, the groups spent the next six months working
together to complete and refine the work they started together.

Our goal was to generate content in the form of white papers, articles, or
other resources in time to share that guidance with the technology community
during the DevOps Enterprise Summit 2015 in October.

We are proud to share the outcomes of the hard work, dedication, and col-
laboration of this amazing group of people.

—Gene Kim
October 2015

v

Introduction

How can I overcome the challenges of implementing test
automation for legacy code?

Many organizations are adopting DevOps patterns and practices, and are en-
joying the benefits that come from that adoption. More speed. Higher quality.
Better value. However, those organizations often get stymied when dealing
with their large legacy codebases, especially when trying to apply test auto-
mation. They struggle with where to start with test automation and how to
justify the effort, often feeling overwhelmed by the sheer amount of work in-
volved. Because of these struggles, many give up before even trying—conse-
quently missing out on the many benefits that test automation can provide.

Purpose, Audience, and Structure

This document addresses how to meet and overcome the challenges associ-
ated with test automation for legacy code. Below, we look at the type of compa-
ny that may have a need for test automation, along with the typical organiza-
tional structure found there. We walk through an approach for justifying test
automation within your organization, providing pillars for that justification, ob-
jections that are commonly raised, and tactics for overcoming those objections.

Our intended audience is anyone who wants to apply test automation to
their legacy code, but is running into internal roadblocks, such as:

• Management or company buy-in,

• Creating space in the schedule, and

• Budget constraints.

By creating this document, we hope that more people will tackle the task of
test automation for their legacy code, will be successful in their efforts to imple-
ment or increase the use of test automation, and ultimately enjoy the benefits
associated with test automation.

Our goal is to cover the basics you’ll need to start the test automation jour-
ney for your legacy code, and help you engage those around you. However, this
document does not cover every tactic, tool, or technique you will likely need.

vii

Nor does this document prescribe any specific “right way” to approach test au-
tomation for legacy code. We intend this document as a starting point, and ex-
pect that you will tailor the approach for your particular organization. Further-
more, while this document mentions specific tools and technologies, we’re not
endorsing any one over another. There are many good tools and technologies
available and the “right one” is the one that’s right for you and your company’s
current situation.

We describe a fictitious organization and the environment in which the lega-
cy code exists. Our intent is to create a realistic, relatable context. We outline a
way for an individual in such an organization to justify test automation for lega-
cy code, and describe the approach for overcoming common objections and
challenges to that justification. Of course, while many organizations are similar,
no two are the same. You’ll likely need to adapt the approach to fit your con-
text.

viii

Introduction

Introducing Fictitious
Company with a Large Legacy

Codebase

There are many organizations that started writing software years ago and con-
tinued to enhance and maintain that software over time. If you’re reading this,
you probably work at such a company now. One consistent aspect of such
years-old legacy code is that it usually doesn’t have any automated tests asso-
ciated with it.

In this section, we describe a fictitious organization and the context in which
that legacy code exists. While the organization and context may not exactly
match yours, hopefully it will feel similar enough such that you are able to re-
late to the circumstances.

Code and Environment at Fictitious Company

You’re on a team at Fictitious Company, responsible for an application with
multiple millions of lines of code developed over many years. The application
code is in a version control system and you’ve automated parts of the build pro-
cess using your continuous integration server. The code has no automated tests
of any kind associated with it. Many of the developers who built the early ver-
sions of the application are no longer with the organization.

The application is on a six-month release cycle. The feature backlog is priori-
tized and full for the next two years. It’s likely a customer will have to wait a
year or more even for a high-priority feature request to make it into a release. In
some cases, customers have been told that features they were promised in a
release would be delivered in a future release because of schedule slippage.

Each six-month release of the application adds about 100,000 lines of new
code to the codebase. The Development team is reluctant to delete any unused
code because they’re afraid of unintentionally breaking other parts of the appli-
cation.

9

1

The Development team follows an Agile process (Scrum) and works relative-
ly well with the Product Management group (which everyone in IT calls “the
business”). The Operations team hasn’t yet adopted Agile methods. The Devel-
opment team often, but not always, hits their sprint goals. They usually feel
rushed at the end of the four-month development phase to get all of the plan-
ned feature functionality built before going into testing with the Quality Assur-
ance team. Sometimes they finish building the planned feature functionality af-
fter they’ve handed off the code to the Quality Assurance team to test.

The Quality Assurance team is responsible for testing the application and
performs all testing manually. The testing phase is scheduled for two months at
the end of the six-month release cycle. However, the Quality Assurance team
frequently complains they don’t have enough time to adequately test the appli-
cation. They cite reasons such as: priority “fast track” changes, upstream devel-
opment activities that took longer than expected, and Product Management’s
unwillingness to move release dates promised to customers.

The Quality Assurance team conducts regression testing for every release. As
the codebase grows, their regression testing is taking longer and longer. At the
same time, more bugs are also making their way into production, often requir-
ing post-release patches to fix them. Because of the size of the codebase and
the compressed schedule for post-release patches, the patches often introduce
as many bugs as they fix.

In general, everyone across departments and teams agrees that the pace
with which they can add new feature functionality is slowing and the quality is
decreasing. At this point, the status quo is not sustainable.

Organizational Structure

Your organization is like many: it is split into various functional silos. Your orga-
nization’s CIO has established and documented a software development pro-
cess which defines all of the responsibilities, artifacts, interactions, reviews,
and handoffs for the various groups. The groups usually make decisions based
on their own perspective and goals rather than looking across the entire value
stream. The CIO does require some basic reporting for IT, including cost and
schedule performance for projects, performance against operational service
level agreements, and some high-level quality metrics for reported bugs and
trouble tickets.

The Product Management group is responsible for identifying and prioritiz-
ing the requirements for the organization’s products. The Product Owners are
in this group, but work with a shared pool of business analysts in another part
of the Product Management group to develop detailed requirements and user
stories for the individual product backlogs. Everyone in the organization refers
to Product Management as “the business” because they define the product

CHAPTER 1: Introducing Fictitious Company with a Large Legacy Codebase

10

roadmaps, control the lion’s share of the organization’s budget, and have pri-
mary accountability for the success of the products. The Sales and Marketing
teams generally take their direction from the Product Management group. Sales
is responsible for managing individual customer relationships and passing
along feature requests from customers to Product Management.

The IT organization has three main groups: Development, Quality Assurance,
and Operations. Development has all of the developers and architects; that is,
everybody who designs and writes code. Quality Assurance has the testers and
testing analysts. The testers perform the testing. The testing analysts deter-
mine what needs to be tested and how it should be tested, and also write the
test scripts for the testers to follow. Operations is responsible for managing all
computing infrastructure and networking, as well as “keeping the lights on” for
all the customer-facing and internal applications running in production. Opera-
tions is also responsible for deploying new application releases into produc-
tion, with Development taking a supporting role in the deployments when
needed. IT also has a small Security group that works with Development and
Operations to secure the software and infrastructure.

Performance and Results of the Current Application

The current version of Fictitious Company’s application is certainly not perfect,
but it’s not awful either. Most customers renew their contracts, although anec-
dotal evidence suggests it’s not because they love the application; it’s more out
of necessity and avoidance of “switching costs.”

Recent releases have been particularly problematic. One release caused a
significant outage, triggering a massive spike in customer calls to the help desk.
Customers impacted by the outage received credits to their account in an at-
tempt to improve their satisfaction and retain them as customers. Another re-
lease had several critical bugs in it, requiring a quick post-release patch that
fixed some of the problems, but also introduced new ones. It took multiple
patches to finally produce a stable application. Customer satisfaction metrics
for these two releases were noticeably lower than prior releases.

In general, customer satisfaction metrics are definitely trending down. How-
ever, the organization is still hitting all its business goals and all the members of
the organization’s senior leadership team are still getting their bonuses, so
there’s no sense of urgency to make any changes to how the organization
works.

Making Changes: Introducing Test Automation?

The decreasing quality of the application is creating a lot of unplanned work
and schedule pressure, resulting in stress, longer days, and decreasing employ-

Introducing Fictitious Company with a Large Legacy Codebase

11

ee morale. You want to improve the quality of the application, thereby increas-
ing customer satisfaction.

Based on your understanding of continuous delivery and DevOps, you firmly
believe that your organization could benefit from adopting some of those prac-
tices, especially test automation. However, other people in the organization—
including your management and many of your peers—aren’t as convinced.

You feel your organization needs to make some changes to retain customers,
retain employees, and meet business goals. You’re certain that test automation
is one of those needed changes. But how can you persuade the decision makers
that it will pay off? And what approach should the company take to implement
test automation for such a large legacy codebase?

You realize that it’s not realistic to spend the time and money automating all
the needed unit tests for all of this legacy code. You believe the answer is to find
the right balance of automating tests while still adding the new feature func-
tionality that Product Management wants.

CHAPTER 1: Introducing Fictitious Company with a Large Legacy Codebase

12

Building a Case: Justification

You need a solid approach for justifying test automation to others within your
organization. In this section, we identify some qualitative “pillars” as key con-
cepts in your justification. We also give you a framework for evaluating the ex-
pected value of a test automation effort, along with a case study of how that
framework applied in real life.

Qualitative Pillars

The qualitative pillars are important conceptual points in your justification—
logical arguments to support why test automation is a better approach than
your company’s status quo. We describe a number of these qualitative pillars
that you can use in combination with quantitative data to demonstrate test au-
tomation’s value.

Pillar #1: You need stable and repeatable build and integration.

Repeatable builds are the foundation for automated testing. Although it is
possible to invest in automated testing without this pillar, we don’t recommend
scaling an automated test investment without having repeatable build and in-
tegration processes in place. Without these practices, the benefits of fast feed-
back from automated testing are greatly diminished. If you cannot assemble
the code and assets to run tests, what good is the test investment?

Additionally, we have found that lack of repeatable builds results in long
feedback loops and can exacerbate the creation of brittle automated tests. We
recommend investing in build practices so that you can at least produce a relia-
ble build on demand, or with daily frequency, to validate minimum build quali-
ty. This should be a first step in any serious automated test investment.

Pillar #2: Manual testing doesn’t scale.

As the scope of the application grows over time, the regression testing need
gets larger and larger. Each time you add to the code base, you have to execute
all the regression testing again and again. That means that you have to either

13

2

sacrifice time (e.g., tests take longer), cost (by employing more testers), or qual-
ity (by skipping some tests) as the application grows in size.

Pillar #3: Delay and rework robs valuable feature development time.

As rework increases, the amount of time left to build features diminishes.
Every rework cycle diverts the team from creating new value; instead, they are
busy fighting quality issues. Complexity growth in the software further exacer-
bates this as it continues to take longer to find and fix any quality issues.

Pillar #4: The primary goal with test automation is to drive down cycle
time to understand quality and working software.

Test automation unlocks the ability to greatly reduce cycle time and make
quality visible and tangible. With an automated test suite, stakeholders no
longer have to wait for elongated regression cycles to understand the quality in
the system. The test automation becomes the rapid and visible indicator of this
quality. Successful test automation also depends on: Continuous Integration
and Deployment, Environment Setup & Congruency, Test Data Setup/Manage-
ment and System Coupling. These areas will require dedicated focus if you
want test automation to provide large scale benefit.

Pillar #5: Optimizing team output across both Dev and QA with high
quality is a key goal.

Simply optimizing development time at the cost of quality and rework is not
optimal. In environments with separate QA groups, it is vital to bring developers
and QA together early and often to integrate test automation into the develop-
ment process. Developers and testers need to collaborate continuously to em-
bed testing design and implementation as early as possible, rather than just
“waterfalling” test automation after development. Otherwise, you will find you
have brittle and unsustainable test processes.

Pillar #6: Making the cost of quality visible to gain alignment on the value
of test automation.

Low quality costs the organization in time and resources. In our example be-
low, we show how you can leverage simple activity-based accounting to illus-
trate the inefficiencies brought on by lack of quality.

Metrics

Your management will want to see a return on investment (ROI) for the resour-
ces they are being asked to put towards test automation. The table below iden-
tifies the important metrics in the justification process, along with the impor-
tance of each metric, how automated testing improves the metrics, and an ap-
proach for measuring it.

CHAPTER 2: Building a Case: Justification

14

Metric Why is this metric im-
portant?

How does automated
testing improve this
metric?

How should I measure
this metric?

Time to pro-
duce a viable
build or Mini-
mum Viable
Build(MVB).

A viable build is the
starting point for any au-
tomated test effort to
provide value. If you
can’t build, you can’t
test.

Automation via continu-
ous integration (CI)
practices makes produc-
ing a build repeatable
and something that can
occur automatically or
on demand.

Tracking the amount of
time it takes to create a
build, deploy and test
minimum viability
should be measured.

Defects ex-
posed to pro-
duction

Defects exposed to pro-
duction cause customer
impact as well as un-
planned work for devel-
opment and operations
to support.

Automated testing in-
creases coverage as well
as drives down cycle
time to understand
quality.

Track tickets by Root
Cause Product or Com-
ponent to create a
baseline that can be im-
proved against.

Time spent on
regression

Dedicated test regres-
sion time is an artifact of
“waterfalling” system
testing or component
testing to the end of the
development process.
Excess time spent on re-
gression indicates a lack
of automated testing.

Good automated test
coverage can make re-
gression a non-event
and something that can
occur every day or con-
tinuously. Data and en-
vironment setup may al-
so need to be addressed
in order to make regres-
sion efficient.

Activity accounting can
help you measure time
spent on regression. Al-
so look for large hard-
ening windows or
schedule buffers added
to the end of develop-
ment cycles.

System
Test(API) Cov-
erage %

System coverage via APIs
tracks two things well: 1)
Good architectural de-
sign to expose function-
ality to downstream sys-
tems, and 2) coverage of
functionality in the sys-
tem

Automated testing will
allow you to rapidly cov-
er more and more func-
tional breadth of the
system to reach higher
levels of coverage.

The best way to meas-
ure API level System
Test Coverage is via
code coverage. Even if
the systems starts at
very low levels (5%),
improving to just 50%
represents a 10x im-
provement and can
make dramatic im-
provements in quality.

Cycle time to
run full test
suite

The amount of time re-
quired to run a full test
suite is important be-
cause it represents the
time required to under-
stand system quality.
Shorter cycle times here
also indicate greater sys-
tem agility.

Good tests and automa-
ted test infrastructure
help provide faster cycle
times to understand
quality.

Measure the time re-
quired to run the test
suite. You should also
measure the frequency
with which you can run
the suite. Ideally, a full
suite can run in a few
hours every day.

Feature time
%

The amount of time in a
value stream or team

Good automated testing
decreases feedback

Measure the activity of
the team via activity ac-

Building a Case: Justification

15

Metric Why is this metric im-
portant?

How does automated
testing improve this
metric?

How should I measure
this metric?

spends on innovating
and creating new fea-
tures.

loops and reduces waste
in downstream activities
and rework. This increa-
ses the time that the
team can continue inno-
vating.

counting to determine
how much time is spent
creating new features.

Model

There have been several models developed that try to measure the cost of low
quality in software. Many apply cost measurements to defects and the expense
related to fix them. For our justification here, we focus on a simple Activity Ac-
counting Model derived from Gary Gruver and Jez Humble’s work at HP (see Jez
Humble’s and Gary Gruver’s books in “Resources”). We mainly focus on maxi-
mizing feature development time by leveraging automation to improve quality
and minimize unplanned re-work and decrease cycle time.

Feature development time can be thought of as the time spent creating new
value. All other time — essentially waste — can be reduced by testing automa-
tion. Note that automating testing alone is often not enough; rather, continu-
ous integration practices and environment automation are often required to get
maximum value. Automated tests won’t help if you have to spend days assem-
bling environments manually.

To begin building an activity accounting model, first define the key activities
that a team or set of teams carries out to build and prepare software for a re-
lease. This data can be obtained from timesheet data or by interviewing the
team and tracking activities for several sprints or a release window. Note that
for justification purposes, it’s not necessary to enumerate every activity, or de-
tail your time precisely to the hour. We find it best to break it out as a percent-
age of total activity as shown in the table of “Before Activity” (or, current state).

Before Activity Before Time

Agile planning 5.00%

environment setup 10.00%

code builds 10.00%

production/downstream support 25.00%

manual testing (current features) 15.00%

CHAPTER 2: Building a Case: Justification

16

Before Activity Before Time

test regression (all features) 20.00%

feature development 15.00%

Total 100.00%

Feature Time 15.00%

Non-Feature Time 85.00%

Once you have current activity time gathered, you need to determine how to
increase feature development time. In our example table, only 15% of the
team’s time is spent building new features. The effort expended to automate
tests can be justified if you are able to increase that feature percentage, and de-
crease that non-feature percentage. This can be accomplished by removing
other non-value added activities.

In this example, we will look to decrease production support and time spent
running regression. The time saved in these activities can be re-directed to-
wards feature development. Note that although this model is directionally
sound, there are inevitably limits to getting perfect returns. For instance, reduc-
ing testing time may require new skills on the team to implement automation.
New skills take time to develop, so achieving perfect ROI is unlikely.

We will carry this model into the case study. In the case study, we look to
define target areas to decrease cycle time and improve the amount of time
spent building features.

Case Study: CSG International’s Test Automation
Effort

CSG International’s test automation effort on their Service Layer Platform (SLP)
is a real-life example of justifying and applying automated tests to legacy sys-
tems. This effort required an investment in CI as a basis and then a significant
investment in test automation using acceptance test-driven development
(ATDD) practices and tooling.

CSG International: Services Layer Platform (SLP)

CSG International provides outsourced customer care and billing services for
major cable customers in the United States. The CSG hosting environment is
complex, with over 20 application stacks supported by over 40 teams.

Building a Case: Justification

17

Before Description

The CSG Service Layer Platform is a critical service infrastructure that expo-
ses many upstream systems for direct consumption by clients. There are more
than 1,200 individual integrations, supporting over a billion transactions per
month for fifty million subscribers for key cable and satellite customers in the
United States.

The SLP system suffered quality issues in platform code as well as defects
leaked from upstream systems to client consumers. At one point in 2011, the
teams were fielding almost one major incident per week. Not only was the cli-
ent impact huge, but this was a large distraction for the team. Since the SLP lay-
er supported customer engagement systems, it was critical to quickly triage
and fix these issues. The fixes pulled vital resources (developers, testers and ar-
chitects/leads) off of feature work to fix production issues. Many of the resolu-
tions were lengthy and required pulling in additional teams to fix or understand
desired behavior. Fixes to these incidents were risky and required re-running
limited coverage across areas believed to be impacted by the fix.

CSG conducted testing on this platform using traditional test case manage-
ment practices with pseudo manual efforts. The teams had simple test injection
tools that would send sample XML messages into the platform, but this was
hardly modern automated testing. Total test coverage was hard to determine
because code coverage was not leveraged.

Actions Taken and Results

To fix these issues required investment in several areas beyond simply
adding automated tests. The team took the following actions over a three-year
period to improve quality on the platform:

1. Investment in stable build and CI.
Prior to taking action, builds were packaged in a haphazard manner and as-

sembled via ad hoc scripts and emailing artifacts between development and
operations teams. So, one of the first investment areas was to apply CI practices
to the SLP. CSG had seen great success using CI for new platforms but had yet to
apply these practices to established or legacy systems. Adding CI to the SLP
drastically reduced cycle time and increased certainty that a build was viable.

2. Infrastructure simplification using the Strangler Pattern.
In addition to the poor testing infrastructure, CSG used a complex and ar-

cane middleware to build the nearly 300 transactions exposed to clients. The
complexity of the code, combined with lack of tests, prevented them from
changing the system in a rapid and low-risk way. Given this, the teams decided
to apply the Strangler Pattern to greatly simplify the operating environment

CHAPTER 2: Building a Case: Justification

18

http://agilefromthegroundup.blogspot.com/2011/03/strangulation-pattern-of-choice-for.html

and the application code. But how could the team proceed with this path when
there was scarce documentation and low test coverage on the current API?

3. Automated Test via ATDD and the Strangler Pattern.
Teams at CSG had recently been trained in ATDD practices and were leverag-

ing these techniques with great success on new efforts to produce code that
was automated with acceptance testing as part of the development lifecycle.
After seeing these results, the SLP team felt that ATDD practices would be an
excellent approach to tease unknown requirements from legacy code to facili-
tate infrastructure changes in a low risk way. After training and several proto-
types the SLP team proceeded on a large scale test automation effort by apply-
ing ATDD techniques to implement API test coverage across the legacy system
for one area at a time. Once coverage had reached a satisfactory level, the
transaction could be ported with near zero risk. The success here demonstrated
that leveraging ATDD and modern techniques on legacy code can yield signifi-
cant value in quality and also enable other concerns like infrastructure up-
grades. This automated test approach made strangling off the old infrastruc-
ture possible.

Summary of Improvements at CSG

The following table highlights valuable metrics that can be used to measure
quality in the system. These metrics cover both Continuous Delivery/Continu-
ous Integration aspects such as “Time to produce a viable build,” and tradition-
al quality metrics like “Defects exposed to production” and “System Test Cover-
age.”

Metric Before After Notes

Time to produce
a viable build or
Minimum Viable
Build(MVB).

48 hours <30 mi-
nutes

CSG teams had deep experience in CI pipelines and
were able to apply this expertise to the SLP effort. A
full CI investment is not required to produce a MVB.

Defects exposed
to production

49/year 2/year The prior defect rates were caused by a variety of
problems: brittle infrastructure, upstream system
quality, environment congruency and SLP quality. As
the teams drove automated test quality higher and
cycle time down these other constraints needed to be
corrected. Additionally, SLP quality drove up quality
in upstream systems exposed via the service layer. In
a perfect world, test coverage in upstream systems
would always originate at the source. In our case, a
combination of automated testing at the exposure
layer(SLP) drove earlier detection of quality in the

Building a Case: Justification

19

Metric Before After Notes

source systems and drove up quality across many sys-
tems.

Time spent on re-
gression

20% of
release
time(15
days)

5% of
release
time (4
days)

Regression time batched up large amounts of re-work
for the entire team.

System Test(API)
Coverage % 15%* 68% *True code coverage prior to test automation was dif-

ficult to determine. This is an estimate.

Cycle time to run
full test suite

15-20
days

2.5
hours

In the “before” case, a full test suite was defined as
new feature testing plus regression time. In the “af-
fter case, most regression was automated and run
nightly. All new features were also added to this auto-
mated suite. Any errors during nightly regression were
added to current backlog and mostly fixed in the cur-
rent iteration.

Feature time % 15% 55%

Due to re-work, only a small amount of time on the
team was being spent building new features. The rest
of the time was spent on support and wasteful activi-
ties that could be automated.

CSG International: Service Layer Platform Metrics Before vs. After

There are several other key points to note:

1. Core team capacity did not increase.
During the SLP effort the team size dedicated to developing and supporting

SLP did not change. The same size team implemented the automated testing,
ported the application and also supported the legacy SLP. This was possible
due to the efficiencies and feedback loop reduction yielded from CI and auto-
mated testing. The team became more efficient via these techniques and was
able to take on more work. As noted in realities below the automation effort did
impact both team composition and teams outside of SLP development.

2. Team satisfaction and confidence increased.
Prior to adding CI and automation, team satisfaction was low, as was the

confidence level in completing changes. This was because there was little visi-
bility into how changes would affect quality, and the incoming stream of high-
stress and impacting incidents in production. After making this automation in-
vestment, teams were confident that changes made were low-risk as they
would receive daily feedback of regressions to the system.

CHAPTER 2: Building a Case: Justification

20

3. Operations partnership was critical to success.
The SLP development team built an excellent DevOps style relationship with

the operations team that supported the platform. As quality increased and cy-
cle time dropped, it became imperative to develop new ways of deploying and
operationalizing the SLP infrastructure. Without operations involvement, the
effort would not have been successful.

The activity accounting improvements as a result of this effort are docu-
mented here:

Before Activity Before Time After Activity After Time

Agile planning 5.00% Agile planning 5.00%

environment setup 10.00% environment setup 5.00%

code builds 10.00% code builds 0.00%

production/downstream support 25.00% production/downstream sup-
port 10.00%

manual testing (current features) 15.00% automated testing (current fea-
tures) 20.00%

test regression (all features) 20.00% test regression (all features) 5.00%

feature development 15.00% feature development 55.00%

Total 100.00% 100.00%

Feature Time 15.00% 55.00%

Non-Feature Time 85.00% 45.00%

%Improvement 266.67%

Some key takeaways from CSG’s turnaround:

1. The SLP improvements resulted from many areas.
Initial drivers for the SLP project were to improve quality and reliability of

the platform, which required more than just adding automated tests. The im-
provement efforts began with CI and also included a re-engineering of brittle
and complicated middleware. However, we want to encourage readers that au-
tomated testing of legacy applications does pay off and it does not require such
an ambitious effort. Start first by implementing basic build repeatability to pro-
duce a repeatable MVB and then begin layering in your first automated tests.

Building a Case: Justification

21

2. Automated testing pays off, but requires perseverance.
The SLP team was aware that they needed to invest in CI and automated

testing. Due to lack of quality and customer impact, the investment was critical
in order for the platform to remain viable as a product. The first steps took a
leap of faith to get going. Once the initiative started, the scope grew, and they
were required more time than originally estimated, impacting resources across
many teams including operations and environment management. It took signif-
icant courage and perseverance to keep teams and stakeholders reassured and
engaged. But in the end, overall efficiency across all teams was improved.

3. Team skills and resources may require investment.
To move testers from simply designing and executing manual tests to actual-

ly automating the tests as part of the development process, the SLP team had
to invest in training current employees, as well as hiring new resources that
could provide automation expertise.

CHAPTER 2: Building a Case: Justification

22

Objections

You are likely encountering objections to pursuing test automation for your leg-
acy code; otherwise you would already have the test automation in place. While
objections are expected, they can be overcome with time, work, conversation,
and creativity. Below, we identify some of the most common objections to test
automation, as well as insights into the source of the objections (i.e., what the
person might be thinking or feeling). The good news? We also list multiple tac-
tics to help you address each objection.

We’ve encountered a variety of objections to test automation. This docu-
ment specifically addresses four of the most common.

• Objection 1: There’s not enough time or money to implement test auto-
mation.

• Objection 2: Automated tests are too brittle and expensive to maintain.

• Objection 3: Testers don’t have the skills to create automated tests.

• Objection 4: We’ve tried test automation in the past and it didn’t work.

You can use as many tactics as appropriate to address these objections and
tweak as necessary to fit your particular circumstances.

Objection 1: We don’t have enough time or money
to implement test automation.

This objection deals with the perceived negative schedule and budget impacts
for the work associated with test automation. The objection is coming from a
“zero-sum” mentality. You’ll hear something like, “We don’t have enough time
or money to create automated tests. Our schedule is already more than full and
we don’t have the budget to bring any new people on.”

23

3

Objection Source

The person raising the objection might be thinking or feeling some of the fol-
lowing:

• “We’re already maxed out on the work we can do for the release. We’re
100% utilized and have no slack.”

• “We are at risk of schedule slippage. Schedule slips have happened be-
fore and we don’t want it to happen again.”

• “I look at how much (manual) testing we’re already doing, and it’s a lot of
work. You’re asking me to automate a lot of work. Which is a lot of work.”

• “Automation takes a lot of time and the payoff is too far down the road.”

• “I’d have to divert dev time to work on the automated tests. If I divert
their attention from features, we won’t get all the features done.”

• “This is new work. New creates change. Change creates risk and chaos.
We don’t need any more of that right now.”

Response

To overcome the objection of “not enough time or money,” you need to accom-
plish three goals:

1. Create space in the schedule to do the test automation work.

2. Manage risk and shorten the “time to payoff by limiting the scope of the
initial test automation effort.

3. Address the value of test automation in the current context of the project.

Applicable Tactics

You should consider using the following tactics in your approach to addressing
the objection.

• Tactic 1: Create a small number of automated smoke tests to run for
each QA build.

• Tactic 2: Hold a weekend hackathon to create the automated tests.

• Tactic 3: Ask for two days for a small team of developers to create the au-
tomated tests.

• Tactic 4: Provide justification for the value of the automated tests.

• Tactic 5: Create information radiators and reports to increase visibility
and transparency.

• Tactic 11: Integrate the automated tests into the build pipeline.

CHAPTER 3: Objections

24

https://en.wikipedia.org/wiki/Smoke_testing_(software)
https://www.atlassian.com/wallboards/information-radiators.jsp

• Tactic 12: Start with creating integration and component tests.

• Tactic 13: Focus the first automated tests on areas of the codebase that
produce the most bugs.

• Tactic 14: Automate existing tests the QA group is already running man-
ually.

• Tactic 16: Create failing unit tests to reproduce bugs.

Objection 2: Automated tests are too brittle and
expensive to maintain.

This objection comes from the perception that: 1) automated tests often break
as the codebase changes, and 2) automated tests take too much time to main-
tain relative to the value the automated tests provide. It’s true that certain
types of automated tests are more brittle than others, particularly those higher
up in the testing pyramid. Therefore, if the team invests too heavily in the
more brittle types of tests, they may spend an excessive amount of time just
keeping the tests up-to-date and running. They won’t get the increased velocity
and quality a more balanced testing approach might bring. You’ll hear some-
thing like, “Given the changes we’re making to the codebase, the automated
tests would break too often and we’d spend too much time updating them to
get them to pass.”

Objection Source

The person raising the objection might be thinking or feeling some of the fol-
lowing:

• “The cost of maintaining the automated tests isn’t worth the value we’d
get from them.”

• “We don’t even have enough time to create the automated tests, let alone
maintain them on an ongoing basis.”

• “We’re making lots of changes to the codebase. Those changes will break
a lot of the tests, and we’ll be further slowed down trying to figure out
whether there’s an actual bug or the test is just out of date.”

Response

To overcome the objection that automated tests are too brittle and expensive
to maintain, you need to accomplish three goals:

1. Explain the different types of automated tests, their purpose, and the
costs/benefits of each (i.e., the testing pyramid)

Objections

25

http://martinfowler.com/bliki/TestPyramid.html
http://martinfowler.com/bliki/TestPyramid.html

2. Increase the relative value of the automated tests.

3. Decrease the relative cost of creating and maintaining the tests.

Applicable Tactics

You should consider using the following tactics in your approach to addressing
the objection.

• Tactic 1: Create a small number of automated smoke tests to run for
each QA build.

• Tactic 4: Provide justification for the value of the automated tests.

• Tactic 8: Provide education to the team on how to create and maintain
automated tests.

• Tactic 9: Use tools that record manual actions by the tester to generate
scripts.

• Tactic 10: Create templates and frameworks to make it easier to create
and maintain automated tests.

• Tactic 11: Integrate the automated tests into the build pipeline.

• Tactic 12: Start with creating integration and component tests.

• Tactic 13: Focus the first automated tests on areas of the codebase that
produce the most bugs.

• Tactic 14: Automate existing tests the QA group is already running man-
ually.

• Tactic 16: Create failing unit tests to reproduce bugs.

Objection 3: Testers don’t have the skills to create
automated tests.

This objection comes from the traditional view that a tester’s primary function
is to execute manual test scripts (e.g., click this, type that) and log the results in
a tracking system. A smaller number of test analysts (different from the testers
executing the manual test scripts) usually write the manual test scripts for the
testers to execute. The traditional view also holds that individuals involved in
testing do not have the same level of technical expertise as developers; that is,
coding is generally outside their skill set. You’ll hear something like, “Automa-
ted tests require coding. Our testers don’t have that skillset.”

Objection Source

The person raising the objection might be thinking or feeling some of the fol-
lowing:

CHAPTER 3: Objections

26

https://en.wikipedia.org/wiki/Smoke_testing_(software)

• “Our testers don’t have the coding background or expertise needed to
create automated tests.”

• “Testers are testers for a reason. They didn’t want to code or didn’t have
the aptitude to code. If they did, they would’ve been developers.”

• “Coding is a complicated task requiring lots of expertise to do it right.”

Response

To overcome the objection that testers don’t have the skills to create automa-
ted tests, you need to accomplish three goals:

1. Create an accurate picture of the coding involved in automated tests and
the skills required to do it.

2. Get the decision-makers to focus first on “what” needs to be done to cre-
ate automated tests, rather than “who” will do it.

3. Break down the notion that “developers don’t do testing and testers
don’t do coding.”

Applicable Tactics

You should consider using the following tactics in your approach to addressing
the objection.

• Tactic 6: Pair a developer and a testing analyst together to create auto-
mated tests.

• Tactic 7: Identify those doing testing who also have coding skills or the
ability to learn them.

• Tactic 8: Provide education to the team on how to create and maintain
automated tests.

• Tactic 9: Use tools that record manual actions by the tester to generate
scripts.

• Tactic 10: Create templates and frameworks to make it easier to create
and maintain automated tests.

• Tactic 15: Change the culture around testing and builds.

Objection 4: We’ve tried test automation in the past
and it didn’t work.

This objection stems from previous efforts to implement or increase test auto-
mation that didn’t deliver the expected results of increased velocity and im-

Objections

27

proved quality. Of course, the shortfall in testing automation results your com-
pany experienced in the past could be attributed to a variety of reasons.

• The people who created the tests were not the same people responsible
for maintaining them over time as the code changed. There was no ac-
countability for keeping the tests valid. For example, the initial creation of
automated tests may have fallen to an offshore/outsourced group while
new development tasks stayed with the in-house IT shop. No one was re-
sponsible for maintaining the tests once they had been created.

• The company culture valued meeting the schedule more than they valued
quality. As a result, they may have ignored failing tests in order to hit a
milestone date, rather than fixing the root issue that made the test fail in
the first place.

• No time was built into the schedule to create and maintain automated
tests. The codebase “evolved away” from the tests, resulting in new code
without automated tests and old tests that became irrelevant and ignor-
ed as code changed.

• The test automation effort didn’t focus on the right kind of automated
tests from the outset. For example, the emphasis may have been on cre-
ating many low-level unit tests requiring significant effort, or perhaps
there may have been too many brittle acceptance tests that needed to be
changed frequently.

• No one created a job on the continuous integration server to integrate the
automated tests into the pipeline. Nothing and no one ran the automated
tests regularly or frequently so they went unused and became inconsis-
tent with the codebase.

Objection Source

The person raising the objection might be thinking or feeling some of the fol-
lowing:

• “We’ve been down this road before without success. Why will this time be
any different?

• “We spent a lot of time and money the last time and got no value for it.”

• “We still have remnants (like old automated test code) from the last test
automation effort that aren’t being used. Why would we do more when
we’re not even using what we already have?”

• “Even if we start well with the automated tests, we won’t be able to main-
tain them. We lack the discipline to keep the tests valid.”

CHAPTER 3: Objections

28

Response

To overcome the objection that any new effort to implement test automation
won’t deliver the expected benefits any more than past efforts did, you need to
accomplish three goals:

1. Identify the important differences between the last test automation effort
and this one that will improve the chances of success this time.

2. Establish a realistic approach for keeping the automated tests up-to-date
as the code changes.

3. Address the accountability for automated test maintenance; that is, who
will maintain the tests and why they should care.

Applicable Tactics

You should consider using the following tactics in your approach to addressing
the objection.

• Tactic 5: Create information radiators and reports to increase visibility
and transparency.

• Tactic 11: Integrate the automated tests into the build pipeline.

• Tactic 12: Start with creating integration and component tests.

• Tactic 13: Focus the first automated tests on areas of the codebase that
produce the most bugs.

• Tactic 14: Automate existing tests the QA group is already running man-
ually.

• Tactic 15: Change the culture around testing and builds.

• Tactic 16: Create failing unit tests to reproduce bugs.

Objections

29

https://www.atlassian.com/wallboards/information-radiators.jsp

Tactic Details

As you can see, your strategy for implementing test automation and overcom-
ing objections can include a variety of tactics. The tactics that will work best for
you depend on your particular circumstances and context. Again, there is no
“one size fits all” approach to this kind of change—what works great in one set-
ting may be completely ineffective in another. As the change agent for your or-
ganization, you (and other supporters) should assemble these tactics and oth-
ers into a plan that works for you and your organization.

For reference, the table below shows which tactics you should consider
when responding to each objection

The full list of tactics is:

• Tactic 1: Create a small number of automated smoke tests.

• Tactic 2: Hold a weekend hackathon to create the automated tests.

• Tactic 3: Ask for two days for a small team of developers to create the au-
tomated tests.

• Tactic 4: Provide justification for the value of the automated tests.

• Tactic 5: Create information radiators and reports to increase visibility
and transparency.

• Tactic 6: Pair a developer and a testing analyst together to create auto-
mated tests.

• Tactic 7: Identify those doing testing who also have coding skills or the
ability to learn them.

• Tactic 8: Provide education to the team on how to create and maintain
automated tests.

• Tactic 9: Use tools that record manual actions by the tester to generate
scripts.

• Tactic 10: Create templates and frameworks to make it easier to create
and maintain automated tests.

• Tactic 11: Integrate the automated tests into the build pipeline.

31

4

https://en.wikipedia.org/wiki/Smoke_testing_(software)
https://www.atlassian.com/wallboards/information-radiators.jsp

• Tactic 12: Start with creating integration and component tests.

• Tactic 13: Focus the first automated tests on areas of the codebase that
produce the most bugs.

• Tactic 14: Automate existing tests the QA group is already running man-
ually.

• Tactic 15: Change the culture around testing and builds.

• Tactic 16: Create failing unit tests to reproduce bugs.

Objection
1: “We
don’t have
enough
time or
money to
implement
test auto-
mation.”

Objec-
tion 2:
“Auto-
mated
tests are
too brit-
tle and
expen-
sive to
main-
tain.”

Objection
3: “Test-
ers don’t
have the
skills to
create
automa-
ted
tests.”

Objection
4: “We’ve
tried test
automa-
tion be-
fore and it
didn’t
work.”

Tactic 1: Create a small number of automa-
ted smoke tests. X X

Tactic 2: Hold a weekend hackathon to cre-
ate the automated tests. X

Tactic 3: Ask for two days for a small team
of developers to create the automated
tests.

X

Tactic 4: Provide justification for the value
of the automated tests. X X

Tactic 5: Create information radiators and
reports to increase visibility and transpar-
ency.

X X

Tactic 6: Pair a developer and a testing an-
alyst together to create automated tests. X

Tactic 7: Identify those doing testing who
also have coding skills or the ability to
learn them.

 X

Tactic 8: Provide education to the team on
how to create and maintain automated
tests.

 X X

Tactic 9: Use tools that record manual ac-
tions by the tester to generate scripts. X X

CHAPTER 4: Tactic Details

32

https://en.wikipedia.org/wiki/Smoke_testing_(software)
https://www.atlassian.com/wallboards/information-radiators.jsp

Objection
1: “We
don’t have
enough
time or
money to
implement
test auto-
mation.”

Objec-
tion 2:
“Auto-
mated
tests are
too brit-
tle and
expen-
sive to
main-
tain.”

Objection
3: “Test-
ers don’t
have the
skills to
create
automa-
ted
tests.”

Objection
4: “We’ve
tried test
automa-
tion be-
fore and it
didn’t
work.”

Tactic 10: Create templates and frame-
works to make it easier to create and main-
tain automated tests.

 X X

Tactic 11: Integrate the automated tests in-
to the build pipeline. X X X

Tactic 12: Start with creating integration
and component tests. X X X

Tactic 13: Focus the first automated tests
on areas of the codebase that produce the
most bugs.

X X X

Tactic 14: Automate existing tests the QA
group is already running manually. X X X

Tactic 15: Change the culture around test-
ing and builds. X X

Tactic 16: Create failing unit tests to repro-
duce bugs. X X X

Below, we delve further into each tactic that you might employ.

Tactic 1: Create a small number of automated smoke tests.

• A “small number” might be 5–10. Keeping the number of tests small lim-
its the amount of work to create the tests, as well as the downstream
work to maintain the tests.

• These tests should exercise the basic functionality of the system—not
complicated edge cases. This will make the tests less susceptible to
change.

• These tests should be simple and easy to maintain.

Tactic Details

33

https://en.wikipedia.org/wiki/Smoke_testing_(software)

• You’re creating a small number of good, valuable tests—don’t try to take
on too much, which would overwhelm your developers, your schedule,
and your budget.

• Good candidates for these tests would be the starting points for many of
the other testing scenarios—like “log in” or “go to the home page.”

• These tests should run at a minimum right after doing a deploy to the QA
environment and before announcing to the QA group the new build is
ready for testing.

◦ A better approach would be to run the tests after each code commit
or on a schedule through a job on the continuous integration server
(see Tactic 11).

Tactic 2: Hold a weekend hackathon to create the automated tests.

• Holding the event on a weekend limits the impact on the “normal” work
schedule.

• Make the event fun.

• Provide comp time or another benefit.

• Position the event as (among other things) a learning opportunity for at-
tendees.

• Invite developers and others who might be interested in automated test-
ing (e.g., analysts, testers, ops) to promote inclusivity.

• Use this tactic if your organizational culture is receptive to “giving your
own time.”

• You should also use the hackathon to create a job on the continuous inte-
gration server to run the automated tests (see Tactic 11).

• Ask for some time in the normal schedule following the hackathon to
maintain the tests.

Tactic 3: Ask for two days for a small team of developers to create
the automated tests.

• You’re time-bounding the effort and limiting the number of developers in-
volved to minimize the impact on the organization’s schedule.

• The rest of the developers can continue to focus on feature development.

• You should also have the team create a job on the continuous integration
server to run the automated tests after each build (see Tactic 11).

• Use this tactic instead of or in addition to the hackathon to create space
in the schedule.

CHAPTER 4: Tactic Details

34

Tactic 4: Provide justification for the value of the automated tests.

• The organization is already losing time due to idle time and context
switching from unplanned work resulting from broken builds.

• You’re also spending significant time doing regression testing late in the
lifecycle.

• You can expect to start saving time as soon as the automated tests are in
place, so the ROI is immediate.

• Using automated tests will save time in regression testing.

◦ Testers will need to do less manual testing for areas covered by the
automated tests.

◦ Testers will find fewer bugs in the areas covered by the automated
tests, which will result in less unplanned work for the team overall
(i.e., developers fixing, testers re-testing).

• When using automated smoke tests for QA builds (see Tactic 1):

◦ A broken build delivered to QA costs us two days for both Dev and
QA to handle break/fix.

• One broken build caught before it goes to QA saves two days against the
schedule and helps us avoid “heroic efforts (e.g., late nights, weekends)
to stay on schedule.

Tactic 5: Create information radiators and reports to increase
visibility and transparency.

• The information radiators and reports will show which tests you have,
when they run, and the results of those runs (e.g., pass, fail).

• A report will also show how much of the code is covered by automated
tests, which will increase confidence in the quality of that code.

• A secondary benefit of the test automation and reports is they also in-
crease auditability since the results of the test runs are artifacts them-
selves.

• The team will get timely notifications when a test fails so they can fix the
issue quickly. The sooner you know about a problem, the easier it is to fix,
the fewer downstream impacts you have (e.g., sending a broken build to
QA), and the less unplanned work you will have.

• Using information radiators accessible to the whole team will increase
the team’s awareness of testing and overall code quality.

• You’ll get more visibility into the quality of the code so you’ll feel more in
control.

Tactic Details

35

https://www.atlassian.com/wallboards/information-radiators.jsp

• The information radiators and reports could help you justify the test au-
tomation effort by measuring both defect density and mean time to reso-
lution (MTTR) for automated versus manually tested code.

Tactic 6: Pair a developer and a testing analyst together to create
automated tests.

• Dev and Test employees together have complementary skills enabling
them to create and maintain the tests.

• The testing analyst brings the skills of what needs to be tested and how it
should be tested.

• The developer brings the skills to write code to automate the tests.

• These two skillsets complement each other.

• Initially pair senior developers with senior testing analysts to improve the
quality and value of the automated tests. This will also help you learn
more about what works and what doesn’t in your environment. You can
introduce less senior staff into the process later.

Tactic 7: Identify those doing testing who also have coding skills
or the ability to learn them.

• Some of those performing testing do have the skills based on their back-
ground, experience, and interests.

• Some would be eager to learn new skills to advance their career.

• Creating automated tests doesn’t require the same level of expertise as
designing and building business functionality.

• Creating the tests is separate from and requires different skills than creat-
ing the test harness. Creating the test harness generally requires more
technical expertise than creating automated tests that work within the
harness.

Tactic 8: Provide education to the team on how to create and
maintain automated tests.

• There are many options for the education: classroom-style training, on-
line training and tutorials, after-hours events, resources lists, “lunch and
learn/brown bag” sessions, workshops.

• The education will raise overall awareness of automated testing and sig-
nal to the team that automated testing is important since you are allocat-
ing time to learn about it.

CHAPTER 4: Tactic Details

36

• Different options could be more effective for some people at learning and
more cost effective for the organization.

• Ensure the education is applied on the job as soon after (or even during)
the training as possible.

Tactic 9: Use tools that record manual actions by the tester to
generate scripts.

• Some tools (e.g., Selenium) provide a “record” feature that captures the
manual actions of a tester for future automated “playback.”

• These tools provide a starting point for code that can be edited later,
rather than having to create code from scratch.

• Using the tool and maintaining the generated code doesn’t require expe-
rienced developers, although it does require someone to be comfortable
with the tool and code in general.

Tactic 10: Create templates and frameworks to make it easier to
create and maintain automated tests.

• Templates and frameworks reduce the amount of effort needed to create
automated tests since they provide reusable code.

• Templates and frameworks make the creation of automated tests more
accessible to people with less technical experience because they abstract
away some of the complexities of creating the tests and integrating them
into the test harness.

• Because templates and frameworks make it easier to create and maintain
automated tests, you’ll reduce the dependence on key development re-
sources and increase the number of people capable of creating and main-
taining automated tests.

Tactic 11: Integrate the automated tests into the build pipeline.

• The integration could be accomplished through a job on the continuous
integration server.

• The job should run after each build.

• You should configure the job so that if an automated tests fails, it breaks
the build.

• The tests will run more frequently and therefore will be more valuable.

• Running the tests automatically as part of the build pipeline will shorten
the feedback loop between code creation and test run, which will make it
easier for developers to fix problems and reduce unplanned work.

Tactic Details

37

http://www.seleniumhq.org/

Tactic 12: Start with creating integration and component tests.

• Automated integration and components tests are less susceptible to
change than brittle acceptance/user journey tests, which makes them
easier to maintain.

• Automated integration and component tests deliver more value quicker
than unit tests. You can test larger parts of the system with relatively few-
er tests.

• Automated integration and components tests help stabilize what is often
the most fragile parts of the system—component-component interfaces
and boundaries with external systems.

Tactic 13: Focus the first automated tests on areas of the codebase
that produce the most bugs.

• You can determine what areas of the codebase produce the most bugs by
analyzing bug reports and trouble tickets.

• Automated tests used to stabilize fragile parts of the system are more val-
uable since the tests will catch more problems earlier and reduce more
unplanned work.

Tactic 14: Automate existing tests the QA group is already running
manually.

• You’re automating tests already deemed valuable. (Why else would QA be
running them?)

• By aligning the automated tests to valuable work already being done, the
test automation isn’t an academic exercise or a “crusade.”

• After creating the automated tests, you can compare the results from the
automated tests to the results from the manual testing. If the manual
testing is no longer catching bugs for areas of the codebase covered by
the automated tests, you could make the case to eliminate that manual
testing, which would save time and money without sacrificing quality.

Tactic 15: Change the culture around testing and builds.

• You’re establishing clear accountability with developers for keeping the
tests up-to-date and passing.

• The developers will maintain their code and the associated automated
tests—not a separate group. This promotes accountability and increases
efficiency because the tests and the code are maintained together.

• Include automated tests as part of code reviews.

CHAPTER 4: Tactic Details

38

• Establish cultural team norms around testing and builds.

◦ As a team, you’re committed to keeping builds “green” (i.e., all au-
tomated tests pass).

◦ As a team, you’re committed to fixing a broken build immediately
and fixing a broken build takes priority over other work.

◦ As a team, you’re committed to not “ignoring” any automated
tests (i.e., commenting them out, removing them from the test
harness, ignoring a failing test result) to keep the build “green.”
(Note: One organization went so far as to say if you were found to
have commented out code or ignored a test result to get a build
to pass, you would be fired.)

• Bringing the pain of broken builds forward will encourage positive
changes, such as decreasing build time and fixing non-deterministic (or
“flaky”) tests.

Tactic 16: Create failing unit tests to reproduce bugs.

• A developer responsible for fixing a bug first writes a failing unit test to
reproduce the bug. Then the developer works on the code until the unit
test passes.

• A failing unit test promotes more clarity and understanding of a bug be-
tween developers and testers.

• This approach reduces the possibility of regression—which saves time
and money for both developers and testers.

• Writing one unit test to reproduce a bug is a small effort and won’t ad-
versely impact the schedule or budget. In fact, it should help the schedule
by reducing rework.

• Unit tests are less brittle than other types of tests (e.g., integration, UI, ac-
ceptance).

• You should create a job on the continuous integration server to run unit
tests on each code commit. If a unit tests fails, it should break the build.

• Set the expectation with developers that their work is not done until all
the tests pass.

Tactic Details

39

The Ask

So, you’ve concluded that adding test automation to your legacy codebase will
produce many benefits for your team and your customers. You have business
justification. You’re also armed with reasonable tactics you can use to over-
come any objections to test automation. Now it’s time to make “the ask.”

“The ask” is when you go to the person (or people) that holds the positional
and decision-making authority within your organization to make these changes
happen. It could be your manager, the Dev lead, the Product Owner, a project
manager—anyone whose buy-in can help set the test automation implementa-
tion in motion.

You (the “change agent”) should go to the “decision-maker” with your pro-
posal, and ask for the resources you need to pursue test automation. “The ask”
could be for time, money, people, flexibility, or freedom. You should keep the
following principles and concepts in mind when making “the ask.”

1. Focus on the business reasons for doing test automation.

Who will benefit from this effort? How will they benefit? How much will they
benefit? Keep your language focused on the business—rather than technical
correctness or opinion-based arguments.

2. Start small.

Use an incremental, near-term approach at the outset. Keep “the ask” within
your sphere of control or influence as much as possible. The more control or
influence you have to make things happen, the easier it will be to make them
happen. And keeping the effort bounded in near-term will help with clarity and
your ability to deliver value quickly. Once you’ve made good on your commit-
ments, shown success, and delivered value, you’ll have earned the right to ask
for more.

41

5

3. You’re trying to break the vicious cycle that includes manual
testing and get into the virtuous cycle that includes test
automation.

The vicious cycle explains the chain reaction that happens when you have tech-
nical debt, in this case: no test automation. The virtuous cycle explains what
will happen when you start reducing technical debt by pursuing test automa-
tion. These cycles should provide a good conceptual foundation for the discus-
sion.

4. Balance the “gives” and “gets” between the team and the
organization.

You’ll likely have to “give” something first (likely your time) if you want to make
a change. However, you should attempt to maintain some semblance of bal-
ance over time of “gives” and “gets” between the organization and the team. If
the team “gives” something (e.g., their personal time), the organization should
“give” something, too (e.g., time during the workweek, budget, policy flexibili-
ty).

5. Don’t argue if someone raises a concern or objection.

Arguing doesn’t help. Rather, it builds walls and resentment, and makes people
less willing to work with you. Instead, use empathy and a spirit of collaboration
to address the underlying concerns causing the objection in the first place. You
won’t successfully overcome every objection immediately. Be patient and keep
the long-term goal in mind. The short-term goal is to create just a little space to
do something small now that provides value and will advance you toward the
long-term goal.

We hope that this document has provided guidance that helps you find suc-
cess in implementing test automation for legacy code within your organization.
Good luck!This is some text.

CHAPTER 5: The Ask

42

http://technical-debt.org/cycle.png
http://blog.devopsguys.com/2015/07/31/devops-and-automating-the-repayment-of-technical-debt/

Resources

We’ve provided some links to resources we’ve found useful in crafting ap-
proaches to test automation.

Books

• Working Effectively with Legacy Code by Michael Feathers, (Prentice
Hall, 2004)

◦ Summary / Introduction
• Experiences of Test Automation: Case Studies of Software Test Automa-

tion by Dorothy Graham and Mark Fewster, (Addison-Wesley Professional,
2012)

• More Agile Testing: Learning Journeys for the Whole Team by Janet
Gregory and Lisa Crispin, (Addison-Wesley Professional, 2014)

• Clean Code: A Handbook of Agile Software Craftsmanship by Robert C.
Martin, (Prentice Hall, 2008)

• Refactoring: Improving the Design of Existing Code by Martin Fowler,
(Addison-Wesley Professional, 1999)

• ATDD by Example: A Practical Guide to Acceptance Test-Driven Develop-
ment by Markus Gartner, (Addison-Wesley Professional, 2012)

• Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation by Jez Humble and David Farley, (Addison-
Wesley Professional, 2010)

• Lean Enterprise: How High Performance Organizations Innovate at
Scale by Jez Humble, Joanne Molesky, and Barry O’Reilly, (O’Reilly Media,
2014)

• A Practical Approach to Large-Scale Agile Development: How HP Trans-
formed LaserJet FutureSmart Firmware by Gary Gruver, Mike Young, and
Pat Fulgham, (Addison-Wesley Professional, 2012)

43

A

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf
http://www.amazon.com/Experiences-Test-Automation-Studies-Software-ebook/dp/B006RUFM5A/ref=mt_kindle?_encoding=UTF8&me=
http://www.amazon.com/Experiences-Test-Automation-Studies-Software-ebook/dp/B006RUFM5A/ref=mt_kindle?_encoding=UTF8&me=
http://www.amazon.com/More-Agile-Testing-Addison-Wesley-Signature/dp/0321967054/ref=pd_bxgy_14_text_y
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882/ref=pd_bxgy_14_text_y
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672/ref=asap_bc?ie=UTF8
http://www.amazon.com/dp/0321784154/ref=rdr_ext_tmb
http://www.amazon.com/dp/0321784154/ref=rdr_ext_tmb
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley-ebook/dp/B003YMNVC0/ref=sr_1_1?s=digital-text&ie=UTF8&qid=1441969148&sr=1-1&keywords=continuous+delivery
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley-ebook/dp/B003YMNVC0/ref=sr_1_1?s=digital-text&ie=UTF8&qid=1441969148&sr=1-1&keywords=continuous+delivery
http://www.amazon.com/Lean-Enterprise-Performance-Organizations-Innovate-ebook/dp/B00QL5MSF8/ref=pd_sim_351_2?ie=UTF8&refRID=0XGRFRM6VWJFBYT681RH&dpSrc=sims&preST=_AC_UL480_SR315%2C480_
http://www.amazon.com/Lean-Enterprise-Performance-Organizations-Innovate-ebook/dp/B00QL5MSF8/ref=pd_sim_351_2?ie=UTF8&refRID=0XGRFRM6VWJFBYT681RH&dpSrc=sims&preST=_AC_UL480_SR315%2C480_
http://www.amazon.com/Practical-Approach-Large-Scale-Agile-Development-ebook/dp/B00A8IYB2W/ref=sr_1_3?s=digital-text&ie=UTF8&qid=1441969306&sr=1-3&keywords=gary+gruver
http://www.amazon.com/Practical-Approach-Large-Scale-Agile-Development-ebook/dp/B00A8IYB2W/ref=sr_1_3?s=digital-text&ie=UTF8&qid=1441969306&sr=1-3&keywords=gary+gruver

Online Resources

• Test Pyramids by Martin Fowler

• Running an internal hackathon by Randall Degges

• Strangulation: The Pattern of Choice for Risk Mitigating, ROI-
Maximizing Agilists When Rewriting Legacy Systems by Joshua Gough

• Can unit testing be successfully added into an existing production
project? If so, how and is it worth it? Stack Overflow

Appendix A, Resources44

http://martinfowler.com/bliki/TestPyramid.html
https://stormpath.com/blog/running-your-first-internal-hackathon/
http://agilefromthegroundup.blogspot.com/2011/03/strangulation-pattern-of-choice-for.html
http://agilefromthegroundup.blogspot.com/2011/03/strangulation-pattern-of-choice-for.html
http://stackoverflow.com/questions/3476054/can-unit-testing-be-successfully-added-into-an-existing-production-project-if-s
http://stackoverflow.com/questions/3476054/can-unit-testing-be-successfully-added-into-an-existing-production-project-if-s

Authors and Contributors

Authors

• Jeff Gallimore, Partner, Excella Consulting

• Steve Neely, Director of Software Engineering, Rally Software

• Terri Potts, Technical Director, Raytheon IIS Software

• Scott Prugh, Chief Architect, CSG International

• Tim Wilson, Solution Architect, IBM

Other Contributors

• William Hertling, HP

• Anders Wallgren, CTO, Electric Cloud

• Jeremy Van Haren, Director of Software Development, CSG International

45

B

Acknowledgments

IT Revolution wishes to thank the following sponsors for making the DevOps
Enterprise Forum possible.

We wish to thank all the participants of the 2015 DevOps Enterprise Forum

• Steve Barr, Executive Director, Operations at CSG International

• Ross Clanton, Senior Group Manager, Target

• Jason Cox, Director of Systems Engineering, The Walt Disney Company

• Dominica DeGrandis, Director, Learning & Development, LeanKit

• James DeLuccia, Director and Leader for Certification Services, EY Certify-
Point

• Jason DuMars, Senior Director of Technical Operations, SendGrid

• Paul Duvall, Chairman and CTO, Stelligent, Author of Continuous Integra-
tion and DevOps in AWS

47

C

• Damon Edwards, Managing Partner DTO Solutions, Inc

• Nicole Forsgren, PhD, Director Organizational Performance and Analytics,
Chef

• Jeff Gallimore, Partner, Excella Consulting

• Gary Gruver, President, Practical Large Scale Agile LLC

• Sam Guckenheimer, Product Owner, Microsoft

• Mirco Hering, DevOps Lead APAC, Accenture

• Christine Hudson, Solutions and Product Marketing, Rally Software

• Jez Humble, Owner, Jez Humble & Associates LLC

• Mustafa Kapadia, DevOps Service Line Leader, IBM

• Nigel Kersten, CTO, Puppet

• Gene Kim, Author and Researcher

• Courtney Kissler, Vice President of E-Commerce and Store Technologies,
Nordstrom

• Dave Mangot, Director of Operations, Librato, Inc.

• Mark Michaelis, Chief Technical Architect, IntelliTect

• Heather Mickman, Senior Group Manager, Target

• Chivas Nambiar, Director DevOps Platform Engineering, Verizon

• Steve Neely, Director of Software Engineering, Rally Software

• Tapabrata “Topo” Pal, Product Manager, CapitalOne

• Eric Passmore, CTO MSN, Microsoft

• Mark Peterson, Sr. Director, Infrastructure Engineering & Operations,
Nordstrom

• Scott Prugh, Chief Architect, CSG International

• Terri Potts, Technical Director, Raytheon IIS Software

• Walker Royce, Software Economist

• Jeremy Van Haren, Director of Software Development, CSG International

• Jeff Weber, Managing Director, Protiviti

• James Wickett, Sr. Engineer, Signal Sciences Corp

• John Willis, Director of Ecosystem Development, Docker

• Tim Wilson, Solution Architect, IBM

• Elizabeth Wittig, Field Solutions Engineer, Puppet

• Julie Yoo, Vice President, Information Security Compliance, Live Nation`

Appendix C, Acknowledgments48

And we would also like to acknowledge the organizers, scribes, editors, and
designers who lent their support and attention to make the event and these ar-
tifacts possible:

Alex Broderick-Forster, Alanna Brown, Robyn Crummer-Olson, William Her-
tling, Aly Hoffman, Todd Sattersten, and Brian David Smith.

The Ask 49

	Cover
	Copyright
	Table of Contents
	Preface
	Introduction
	Chapter 1. Introducing Fictitious Company with a Large Legacy Codebase
	Chapter 2. Building a Case: Justification
	Chapter 3. Objections
	Chapter 4. Tactic Details
	Chapter 5. The Ask
	Appendix A. Resources
	Appendix B. Authors and Contributors
	Appendix C. Acknowledgments

