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Boundaryless Information Flow 

achieved through global interoperability 

in a secure, reliable, and timely manner 

Executive Summary 

This is one of a series of documents describing how to apply the IT4IT Reference 

Architecture, an Open Group Standard, to various different scenarios related to 

managing the business of IT. 

This document describes the application of the IT4IT Reference Architecture to the 

area of Agile Development using techniques such as DevOps and Kanban. 
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Introduction 

 

Figure 1: Value Stream Overview 

The Open Group IT4IT Forum Agile Work Group is chartered with the following scope: 

• To develop patterns, scenarios, and perspectives demonstrating utility of the IT4IT Reference 

Architecture for Lean and Agile delivery, including DevOps 

• To identify specific changes to the IT4IT Reference Architecture as needed to better support Agile 

delivery 

• To contribute to positioning IT4IT specifically with reference to SAFe, Kanban, SCRUM, and other 

Agile methods 

This document is the Agile Work Group’s first deliverable. 

Version of the Reference Architecture 

This document is based on Version 2.0 of the IT4IT Reference Architecture.1 

 

 

1 The Open Group IT4IT™ Reference Architecture, Version 2.0, Open Group Standard (C155), October 2015, published by The Open Group; refer to: 
www.opengroup.org/bookstore/catalog/c155.htm. 

http://www.opengroup.org/bookstore/catalog/c155.htm
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Business Context: Agile and Lean IT 

The Agile movement represents many years of successful industry application, supported by robust theory, 

and increasingly defines both the goals of Information Technology (IT) management as well as its execution. 

Agile methods and philosophy, originating from the challenges of IT, are informing business strategy well 

beyond the confines of traditional IT. Business strategies are turning to an emphasis on business 

experimentation; e.g., “Fail Fast” and “Think Big, Start Small” [Ries 2011]. These strategies require 

corresponding IT agility: moving from large “batches” of project requirements to the software equivalent of 

Lean “single-piece flow”. 

There are many books and other resources available describing Agile and the reader is referred to the 

references, especially [Humble 2011], [Reinertsen 2009], and [Burrows 2015] as initial reading. 

 

Figure 2: Lean, Agile, DevOps, and Related Conceptual Framing 

“Lean” is the overall philosophical framework, generally credited to Ohno and others at Toyota [Ohno 1988], 

with the name “Lean” first applied by Krafcik [Krafcik 1988], and further Western development and 

popularization by Womack, Jones, Liker, and others [Womack 1990], [Womack 2003], [Liker 2004]. 

Another key related source is the “Theory of Constraints” developed by Eli Goldratt [Goldratt 1997], 

[Goldratt 2004]. 

The application of Lean philosophy to software engineering is closely related to the term “Agile,” as in 

“Agile Development”. The often-cited “Agile Manifesto” [Alliance 2001] states: 

“We are uncovering better ways of developing software by doing it and helping others do it. Through this 

work we have come to value: 

• Individuals and interactions over processes and tools 

• Working software over comprehensive documentation 
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• Customer collaboration over contract negotiation 

• Responding to change over following a plan 

That is, while there is value in the items on the right, we value the items on the left more.” 

The Poppendiecks were early appliers of Lean principles to software development [Poppendieck 2003], 

[Poppendieck 2007]. David Anderson has popularized the Toyota Production System term “Kanban” as a 

form of collaborative work management for software product teams, focused on self-organizing teams 

strongly concerned with flow and limiting work in process [Anderson 2010]. Rational Unified Process author 

Dean Leffingwell has developed the Scaled Agile Framework (SAFe) [Leffingwell 2010]. 

Leffingwell, the Poppendiecks, and Anderson all cite the influence of Don Reinertsen [Reinertsen 1997], 

[Reinertsen 2009]. Reinertsen specializes in Lean product development and has developed a set of theoretical 

perspectives based on economics, queuing theory, statistics, and related topics. 

The Phoenix Project is a notable exploration of the Lean, Agile, and DevOps themes [Kim 2013]. 

Plan Develop Build Test Release Operate

Success measured in speed of

application delivery to production

Traditional Challenges

• Manual release processes

• Agile overloads testing teams

• Build and tear down overhead

of environments

• Lack of production and usage

feedback into development

• Inefficient hand-offs between

tools

• Security an afterthought

and not a focus

Functional

Performance

Virtualize

Security

Instrument

 

Figure 3: Challenges of the IT Value Chain 

As seen in Figure 3, the IT Value Chain has a number of challenges. Manual processes, silo walls between 

development and operations, and poorly integrated tools are some of the problems seen in the legacy methods 

to IT product development. 

Within the general framing of Lean and Agile methods for IT delivery, this scenario reflects and explores 

several major Agile currents: 

• DevOps 

• Bi-modal IT (Gartner) 

• Kanban 

• Scaled Agile Framework (SAFe) 
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DevOps 

“DevOps” (the DevOps response) is a set of innovative practices emerging in reaction. Coined as a 

portmanteau representing “Development” and “Operations” (Patrick Debois is generally credited with 

originating the term), it represents the specific concerns of accelerating flow and software delivery from 

ideation through production, extending Agile philosophy from its traditional home in software development 

into operational domains. Fast feedback is a critical objective. 

Automated, Integrated, Collaborative

Desired Outcomes

• Improved quality of initial

code development

• Accelerated and streamlined

release cycle

• Optimized dev., build, and

test process

• Reduced test and delivery

bottlenecks

• Meshed tool chain, with

integration and abstraction

• Security and compliance built

into the end-to-end process

Plan Release Operate

Test
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Performance

Virtualize

Security

Instrument










Validate



Develop

Build

Collaboration

Provision & Deploy

FeedbackFeedback

 

Figure 4: The DevOps Response 

Hammond and Allspaw’s “10 Deploys per Day: Dev & Ops Cooperation at Flickr” is a key document 

[Allspaw 2009] and Humble and Farley’s “Continuous Delivery” is the first comprehensive text on the 

subject [Humble 2011]. 

For the purposes of this document, Kanban and DevOps, as with other terms like SCRUM and Extreme 

Programming, are seen as specific manifestations of Agile, which is in turn an IT-centric manifestation of 

Lean. 

Some argue that DevOps must transcend Agile, as the broader term. However, if the Agile Manifesto does 

not apply to IT operations, it is difficult to see how DevOps can succeed in its goals. Such conceptual 

questions are of course difficult to settle definitively. 

DevOps Definition 

DevOps is a way of collaborating and industrializing using highly automated approaches to deploy solutions 

that evolve as fast as your business needs it. By adopting DevOps an organization can dramatically improve 

the value delivered by its business. The team-centric DevOps ethos tears down traditional silos to tightly 

integrate business, development, and operations to drive agility and service delivery excellence across the 

entire lifecycle.  
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DevOps Maturity Model (DMM) 

To achieve the DevOps vision, the following maturity model can be defined: 

Level 1: Basic – At the basic level, the following characteristics are apparent: 

Level 1: Basic

Traditional siloed organization  |  separate processes  |  separate tools with many manual activities  |

typically very long release duration and high outages

Level 2: Emerging

Emergence of joint teams  |  starting to establish connected processes  |  some automation & 

isolated tools  |  medium release duration & reduced outages

Level 3 : Co-ordinated 

Joint and shared objectives  |  dev2ops connected lifecycle  |  limited manual 

processes  |  low release duration & significantly reduced outages

Level 4 : Enhanced

Co-authoring of solutions  |  one lifecycle  |  no manual processes +

end-to-end managed environments

Level 5 : Top Level

One team  |  dynamic process  |  near instant deployment of 

changes  |  no dev-related outages

 

Figure 5: DevOps Maturity Model (Notional) 

• People: Separate strategy, design, development, testing, and live operations teams. Complete lack of 

terms of references. No joint sessions, get-togethers. Teams focus on their own direct targets and 

objectives only. No joint or shared objectives and no overall reward system. People only feel accountable 

for their immediate area – no common or overarching ownership. 

• Process: Separate and disconnected processes are place which are ad hoc, reactive, and chaotic. No 

common end-to-end process framework, no common sign-off criteria or any joint solution design 

characteristics that support appropriate “–ilities” (availability, stability, flexibility). 

• Tools: No automation tools, majority of activities are manual, ad hoc, and unplanned. No integration 

between hardware provisioning, operating system installation/configuration, and middleware/application-

related provisioning/installation. No sharing of joint configuration information with all information being 

stored and retained in different repositories. 

Level 2: Emerging – At the emerging level, the following characteristics are apparent: 

• People: Limited changes to basic – still very siloed and separate teams with no single team/person taking 

end-to-end responsibility. Developers mainly focus on functional requirements with very limited focus 

on non-functional requirements. However, there is the emergence of some shared/joint touch points 

where some developers and some operational staff engage. 
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• Process: Limited changes to basic – there are some attempts to establish better managed processes; 

however, these are restricted to specific environments only; i.e., covering development or User 

Acceptance Testing (UAT) only. 

• Tools: Some minor changes to basic, mainly targeted at developing automatic scripts covering hardware 

and operating system-related aspects. As per basic these are mainly targeted at the development 

environments. Most other environments such as testing, training, System Integration Testing (SIT) are 

being manually installed. 

Level 3: Coordinated – At the coordinated level, the following characteristics are apparent: 

• People: Mainly siloed organization; however, lead architect/lead designer(s) increase their scope to also 

include operational aspects. Joint sessions are held to increase wider visibility – for instance, key 

operational staffs are actively engaged in the design and build phase. Developers are also measured on 

operational characteristics. 

• Process: Still mostly separate processes covering the entire solution lifecycle; however, there are some 

joint process points where development and operational aspects are jointly covered. Better understanding 

of the entire environment set-up and characteristics. 

• Tools: Most of the development environment set-up is being created automatically. Only application-

related components are manually installed. 

Level 4: Enhanced – At the enhanced level, the following characteristics are apparent: 

• People: Joint teams that cover the entire solution lifecycle. Lead architect owns entire solution including 

functional and non-functional covering design, build, test, and run. 

• Process: Single overall process covering the entire solution lifecycle – from design, build, test to run. 

Clear visibility of all projects/changes that are at different stages with a clear view on all compliance 

levels (functional and non-functional). Clear view on the entire environment set-up and characteristics. 

• Tools: Most of the development environments; set-up, testing, and live are being created automatically. 

This now covers servers, operating system, operating system near, as well as most middleware and 

application-related components. 

Level 5: Top Level – At the top level, the following characteristics are apparent: 

• People: One team, co-located and extensive collaboration and knowledge sharing. 

• Process: Single overall process covering the entire solution lifecycle – from strategy, planning to design, 

build, test to run. 

• Tools: All environment set-ups are being created automatically from a single repository. This covers all 

aspects – servers, operating system, operating system near, as well as all middleware and application-

related components. No manual processes in place. 
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DevOps Implementation Model (DIM) 

DevOps is hampered by a number of key aspects: 

• The lack of a standard definition for DevOps has created confusion for Infrastructure and Operations 

(I&O) leaders, trying to adopt this philosophy [Gartner 2014] 

• There is no standardized or simplified approach regarding the adoption of DevOps by an enterprise I&O 

leader, causing confusion about how and where to start [Gartner 2014] 

• Each DevOps implementation is unique and every customer requires a customized approach 

[Gartner 2014] 

In practice, tools, methods, and technologies are seldom deployed on green-field sites and the key to 

success is to: 

• Define a clear target 

• Establish a clear transformation plan 

• Actively manage the plan execution 

DevOps implementation should not merely be perceived as deploying a new tool like CodeStream or Docker. 

It should be viewed from a wider perspective and should be planned and executed in an efficient manner. 

Poorly planned DevOps implementations may result in significantly higher costs. 

A DevOps implementation starts with creating a rationale business case, mapping a way for code migration 

between environments (considering people, processes, and technology), and placing focus on the target. 

Understanding the “as-is” scenario, mapping the “to-be” scenario, and estimating the benefits of moving to 

the “to-be” are critical for success. A DevOps implementation should be backed by a strong business case. 

Every environment does not benefit from full or partial DevOps deployment. For instance, environments with 

little change requirements may not benefit from DevOps implementation at all. 

DevOps aims to reduce the impact of changes, to reduce cost, and minimize impact to the live services. As 

applicable to every change project, the decision to change culture or processes and to deploy the right tools 

must be backed by a strong business case. Many businesses struggle to take the right decisions at this stage. 

To estimate the benefits of DevOps implementation within their environment, they should analyze the 

existing situation; the existing tools, processes, resources, and their skills. 
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Figure 6: Transformation Over Time 

Then, as the “snowflake” point in Gartner’s paper [Gartner 2014], each client context is different and 

what works for one might not work for the next. 

A strong business case for DevOps is the prime catalyst which should be thrown in for demonstration of the 

true value across the stakeholder value chain. That being said, there are numerous factors to be considered 

where costs are involved. Some of the major factors which impact costs are: 

• The business processes-related changes and the changes in the way the information flows between 

humans 

• The inconsistencies across process and tools impacting the changes towards new standard operating 

procedures 

• The methods of automated environment provisioning through increased virtualization and cloud adoption 

• A revamp of the change management process and the relevant systems which accounts for the ways in 

which deployment and configuration move towards being more automated than manual 
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DevOps Implementation Approach (DIA) 

DevOps implementations do vary from client to client as there is no single silver bullet. To ensure successful 

adoptions, clients should execute the above activities. However, there are key enablers to consider when 

starting a DevOps engagement. Applying the experience from previous DevOps engagements, there are eight 

key aspects to consider: 

Standardize Train Virtualize

Rationalize Optimize

Hardware, Software,

Procurement 

Automate

Hardware, Software

2 3 4

5 6 7

1

Strategy &

Architecture
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and Network
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Complexity
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End-to-end 

Management

8
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Figure 7: DevOps Implementation Concerns 

1. Strategy and Architecture: Understand where you are; covering business, applications, information, 

and infrastructure. Know where you want to be and have a plan that drives real value. 

2. Standardize: Focusing on hardware, hardware-near software (like operating system), as well as 

middleware and try to standardize as much as possible and reduce overall product variances. 

3. Train: Focus on your people; up-skill and train in basic but also advanced subjects covering 

technology-specific, generic, and soft skills. 

4. Virtualize: Not an absolute must; however, a great accelerator automating processes is abstracting 

from underlying hardware covering not just compute but also storage and network. 

5. Rationalize: Reducing overhead will allow for better focus as well as reduce complexity. 

6. Optimize: Eradicate unnecessary steps in key processes, in particular when these are of manual or 

semi-manual nature. 

7. Automate: A key foundation block for DevOps – automate as much as possible. Moving in to a 

continuous deployment cycle will be accelerated if processes are automated. 

8. Orchestrate: Moving, starting, creating, and deleting services in an orchestrated fashion; for 

instance, via a central capability, will increase the impact of DevOps. 

To determine DevOps success it is necessary to be able to measure the impact across people, process, and 

technology for a successful implementation. 



IT4IT™ Agile Scenario 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  14 

Bi-Modal IT 

Bi-modal or “two-speed” IT is a recent Gartner hypothesis that IT capabilities can usefully be separated into 

two modes: a slow, more deliberate mode for core systems and a faster, more Agile mode for systems 

requiring greater agility. The advantage of the IT4IT Reference Architecture is that one architecture supports 

various “speeds” of IT delivery. 

Kanban 

Kanban [Anderson 2010], [Burrows 2015] is a term for both a specific technique of visually managing work-

in-process, as well as a broader methodology promoted by David J. Andersen. The method calls for self-

organization, limited WIP, culture change, and other goals consistent with Lean and Agile approaches. 

Scaled Agile Framework (SAFe) 

SAFe [Leffingwell 2010], [SAFE 2015] is a more prescriptive framework that formalizes to some degree 

concepts such as epic, story, backlog, release train, and so on. SAFe is perhaps unique among Agile schools 

of thought in explicitly recognizing a role for architecture. 

Agile and the IT4IT Framework 

As the IT4IT framework is process and methodology-agnostic, DevOps can be mapped into the Reference 

Architecture (Figure 8, Figure 9). 
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Figure 8: DevOps Across the IT Value Streams 
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Figure 9: Agile Concerns Across the IT4IT Reference Architecture 

As we can see in Figure 9: 

• Proliferation of queues 

• Enterprise Architecture and portfolio backlog 

• Automation as design criteria 

• Requirements as defects as combined product backlog 

• Automated build process 

• Automated testing 

• Infrastructure as code and automated deployment 

• Event feedback to product backlog 

• Automatic configuration updates 

There may be questions from the Agile community about the role, purpose, and desirability of any 

framework purporting to address some aspect of Agile. However, Lean and Agile authors, case studies, and 

presentations provide a wealth of tangible objectives that can inform the development of a reference 

architecture. 
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The IT4IT standard is not a methodology. It is not primarily concerned with how work is done. This 

distinguishes it from CMMI, ITIL, SAFe, SCRUM, etc. It is a framework and prescriptive in the sense of it 

being a reference model. It is prescriptive in the same sense that design patterns are prescriptive – they 

prescribe a solution, but still need to be applied correctly. 

Frameworks can be implementation methods or reference models. The IT4IT standard is a reference model 

and, as such, is similar to the patterns literature [Buschmann 1996], [Fowler 2003], [Fowler 1997], [Gamma 

1995], [Hay 2006], [Larman 2002]. 

Without question, there are emergent consensus points within the Agile movement that can be stabilized into 

a reference architecture. The central importance of source control is one example, and the IT4IT Reference 

Architecture has been updated accordingly (the “Service Development” component was renamed the “Source 

Control” component). The need to universally identify and manage queues [Reinertsen 2009] is another 

overriding concern, and the basis of Kanban and Queueing (on page 54). 

The IT4IT standard is primarily intended for large enterprise IT organizations. The intent is to enable loosely-

coupled, decentralized Agile teams by prescribing simple IT coordination interfaces supporting accepted 

Agile implementation patterns, informed by documented Agile principles, providing end-to-end traceability 

of IT services. 

The IT4IT standard may become prescriptive in a tighter sense when applied to IT management tool 

interoperability. However, the IT4IT standard is not prescribing particular tools, practices, or methods. 

(Note: Agile/Lean has a strong emphasis on culture and organizational change management. Such concerns 

are outside the purview of the IT4IT standard in general.) 

Business Goals 

It is by now well established that the IT Value Chain is best seen as a product development and management 

process, as opposed to a truly repetitive production process [Reinertsen 2009]. As discussed in the previous 

section, Reinertsen, Poppendieck, and others have developed a variety of well documented and empirically 

proven principles that characterize the Agile/Lean approach for product development. These apply to 

software development, product development, and business development at its most general. 

Essential Agile requirements can be inferred from these classic questions from Mary and Tom Poppendieck: 

• How long would it take your organization to deploy a change that involved just one single line of code? 

• Do you deploy changes at this pace on a repeatable, reliable basis? [Poppendieck 2007, p.92] 

The Kanban movement addresses these business goals by limiting work in process through simple and 

effective shared visual models ([Anderson 2010], [Kniberg 2011], [Burrows 2015]) while the DevOps 

movement seeks to satisfy these business goals by accelerating and making the end-to-end software pipeline 

as automated as possible while bridging the cultural divide between Development and Operations ([Allspaw 

2009], [Humble 2011], [Limoncelli 2014]). 
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Figure 10: Importance of Feedback 

Feedback is a critical objective in product development (e.g., software and systems development); as product 

development is essentially the generation of information [Reinertsen 2009]. 

Examination of various Agile sources supports the following matrix of business objectives for the Agile 

scenario: 

(Note: There is one set of unified business goals for the Agile scenario as a whole, but each sub-scenario has 

its own requirements.)  

 

ID Goals Notes 

G.0.1 Correctly apply economics [Reinertsen 2009] 

G.0.1.1 Understand overall economic impact [Reinertsen 2009]; e.g., leveraging beneficial 
variability and uncertainty 

G.0.1.2 Understand cost of delay and value of 
information 

[Reinertsen 2009], [Hubbard 2010] 

G.0.1.3 Understand metrics as economic proxy 
variables 

[Reinertsen 2009], [Hubbard 2010] 

G.0.2 Avoid waste [Womack 2003] 

G.0.2.1 Limit work-in-process [Kim 2013], [Goldratt 2004] 

G.0.2.2 Reduce task switching or multi-tasking [Kim 2013] 

G.0.2.3 Eliminate non-value-add process [Ohno 1988] 
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ID Goals Notes 

G.0.2.4 Minimize manual work [Humble 2011] 

G.0.2.5 Identify, make visible, and manage all work 
queues 

[Kim 2013] 

G.0.2.6 Avoid the antipattern of “optimizing” for 
utilization 

[Goldratt 2004] 

G.0.3 Maximize information [Reinertsen 2009] 

G.0.3.1 Seek fast feedback [Reinertsen 2009] 

G.0.3.2 Invest in options where possible (e.g., parallel 
development to explore different product 
directions simultaneously) 

[Burrows 2015], [Scotland 2010]  

G.0.3.3 Ensure information visibility across entire 
pipeline 

 

G.0.4 Manage for flow under uncertainty [Reinertsen 2009] 

G.0.4.1 Manage batch size [Reinertsen 2009] 

G.0.4.2 Synchronize complex activities [Reinertsen 2009] 

G.0.4.3 Minimize variability in repetitive processes  

G.0.4.4 Accept and manage variability in creative 
processes 

 

G.0.5 Build effective culture  

G.0.5.1 Manage for end state and intent [Reinertsen 2009] 

G.0.5.2 Encourage self-organization [Anderson 2010] 

G.0.5.3 Tolerate failure; maximize information captured 
and focus on problem-solving 

[Limoncelli 2014] 

G.0.5.4 Employ proven human motivators: autonomy, 
recognition, collaboration, flow 

 

G.0.5.5 Avoid demotivators: control, blame, non-value-
adding work 

 

G.0.6 Build effective software pipeline  

G.0.6.1 Continuously integrate and test source code 
and system functionality at appropriate levels 
(e.g., unit, integration, and system) 

[Duvall 2007] 

G.0.6.2 Maintain complex system functionality in an 
“always shippable” state 

[Allspaw 2009] 
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ID Goals Notes 

G.0.6.3 Fully automate the repetitive aspects of code 
development, build, testing, and deployment 

 

G.0.6.4 Seek end-to-end integration of “development” 
and “operations” tasks, resources, 
communication, and culture 

 

G.0.6.5 Build a product-centric mindset where the 
overriding goal is software functioning correctly 
in production 

[Alliance 2001] 

G.0.6.6 Limit variability by using consistent 
configurations, toolsets, and resources in 
building all environments across the pipeline  

[Duvall 2007] 

G.0.6.7 Roll back failed changes immediately with 
robust and well tested, automated approaches 
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Portfolio and Product Backlog 

Portfolio Backlog Scenario 

Overview 

Portfolio management is a common model for IT investment management [Kaplan 2005], [TSO 2011], 

[Maizlish 2005]. Portfolios are logical, large-grained, investment categories containing products (IT services) 

which are managed throughout the product (IT service) lifecycle. 

The strategic plans and roadmaps for the business are managed at the portfolio level (portfolio backlog), and 

detailed at the product (IT service) level within the portfolios. SAFe uses the term “epic” [SAFE 2015]. User 

requirements, enhancements, open defects, improvement opportunities, and IT demand are tracked at the 

product (IT service) level within a product backlog (alternatively termed program backlog) which exists 

throughout the lifecycle of the product (IT service). 

Management of portfolio backlogs (strategic demand/roadmaps) should be consistent across all portfolios. 

Likewise, product (IT service) backlogs should be managed consistently across business units. In this way, 

staff who support various portfolios and products use the same tools and processes, thereby reducing total 

time/cost on projects since different project delivery staff could be assigned to any project/effort. Managing 

consistently also enhances transparency. 

As product stakeholders (e.g., “the business”) identify needs, they work with product delivery (e.g., “IT”) to 

validate those business needs against the service portfolio to determine whether the needs could be met by 

enhancing existing IT services, or if new IT services would be needed. The business works with IT to add the 

business need (portfolio demand) as a portfolio backlog item for a particular business unit (portfolio). 

Product owners and delivery teams collaborate to determine when funding is available to allow the initiation 

of work (project). At that time they will approve work to be performed for one or more portfolio backlog 

items. The portfolio backlog items will be linked to specific products (IT services) by linking to requirements 

(product backlog items). Once the project funding is approved, work will begin to create or modify the 

product (e.g., an IT service). 

Requirements 

ID Goals 

PFBG.01 Utilize an integrated suite of tools and aligned processes for all efforts across the IT organization 
regardless of approach (methodology) or customer (business unit) resulting in lower training costs 
and increased flexibility in staffing initiatives. 

PFBG.02 Manage and maintain authoritative repositories for key data elements within the IT organization. 

PFBG.03 Visibility into planned, in-progress, and completed work across the IT organization. 

PFBG.04 Roadmaps are derived from the portfolio backlog and should exist for every portfolio with a focus 
on the current fiscal year, view into the last fiscal year, and view into the next fiscal year. 

PFBG.05 A product backlog exists for each IT service throughout the life of that IT service. 
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ID Goals 

PFBG.06 The product backlog supports any software development methodology (i.e., Agile, waterfall, RUP). 

PFBG.07 Product backlog contains all proposed changes to an IT service (i.e., user stories, enhancement 
requests, defects). 

PFBG.08 Project delivery begins after funding has been approved by the applicable governing group. 

PFBG.09 Ability to capture business needs in the portfolio backlog as a portfolio backlog item: 

 Portfolio 

 Summary 

 Description 

 Status 

 Priority 

 Planned fiscal year 

 Rough order of magnitude effort estimate 

PFBG.10 Ability to link a portfolio backlog item to one or more conceptual services: 

 Portfolio backlog item 

 Conceptual service 

PFBG.11 Ability to link a portfolio backlog item to one or more product backlog items: 

 Portfolio backlog item 

 Product backlog item (requirement) 

PFBG.12 Ability to link an IT project to a portfolio backlog item(s): 

 IT project (scope agreement) 

 Portfolio backlog item 
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Process Flow 
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PFBREQ.01: Process requirements record a business need in the portfolio backlog 

The business identifies needs during annual planning and records those efforts in the roadmap (portfolio 

backlog). Annually, a budget is agreed by the business and the roadmap is updated to reflect what work is 

planned for the current fiscal year and what work will be moved to future fiscal years. Throughout the year, 

additional needs may be identified, in which case the business works with IT to update the roadmap and 

potentially defer existing planned work. The roadmap is kept in priority order as funding may be changed 

throughout the year and additional work may be brought into a given year, or pushed to a future year. 

In some Agile shops, annual planning may not occur and the portfolio backlog is updated as business 

identifies needs. As work is planned, portfolio backlog items will be moved or linked to a program or team 

backlog and worked by the Agile teams. 

PFBREQ.02: Roadmap items are validated against IT services 

As business needs are identified, IT will work with the business to understand if an existing service(s) could 

be modified to meet the need, or if a new service(s) is needed to meet the need. As new services are 

conceived, portfolio backlog items may be linked to the new services. 

PFBREQ.03: Map portfolio backlog items to product backlog items 

IT links portfolio backlog items to one or more product backlog items (user stories). This allows traceability 

of product backlog items to the scope agreement when one or more portfolio backlog items are approved to 

work. 
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PFBREQ.04: Approve portfolio backlog item to be worked 

The business reviews the roadmap (portfolio backlog) and approves funding for work to begin. The business 

may delegate funding authority to the product team and trust that the product team is focused on delivering 

business results. 

The roadmap items are linked to one or more products (IT services) and the corresponding product backlog 

items for those IT services. The business approves a project, which is linked to the appropriate portfolio and 

product backlog items, to begin and with an initial budget. 

 

Goal Explanation 

G.01 Demand processes and management of the portfolio backlog are consistent across all 
methodologies and portfolios. 

G.02 Single repository for the portfolio backlog is management and maintained for all portfolios. 

G.03 
G.04 

A portfolio backlog exists for the key business portfolios and shows past roadmap items, planned 
roadmap items, and future roadmap items. 

G.08 Projects can only start if there is agreement from the business (IT contract) for scope and cost. 

Automation Specification Using the Reference Architecture 

The portfolio backlog is composed of large-grained, thematic requirements (aka epics). Requirements come 

from business strategy in the face of market conditions. 

The reference architecture supports the system of record functional components for service portfolio, 

portfolio demand, and proposal. 

Essential Services Supporting the Scenario 
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The scenario calls for essential services that can: 

1. Create/update a conceptual service 

2. Create/update a portfolio backlog item 

3. Create a scope agreement 

Data Architecture 
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The major entities include: 

1. Conceptual service 

2. Portfolio Backlog Item 

3. Requirement 

4. Product Backlog Item 



IT4IT™ Agile Scenario 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  25 

5. Scope Agreement 

See Kanban and Queueing (on page 54) for a discussion of how requirements and backlog items might be 

consolidated with a common queuing interface. 

Detailed Explanation of Reference Architecture Usage 

Service Portfolio Component

Conceptual 

Service

Portfolio Demand Component

Portfolio 

Backlog Item

Requirement Component

Requirement

Manage Proposals

Proposal Component

Scope 

Agreement

Update 

Requirement

Create 

Requirement

Create Scope 

Agreement

Update Conceptual 

Service
Create Conceptual 

Service

Manage Service

 Portfolio

Manage Product

Backlog Items

Manage Demand

Product 

Backlog Item

 

1. The Manage Service Portfolio process creates/updates the Conceptual Service. 

2. The Manage Demand process creates/updates portfolio backlog items (e.g., epics) (diagram shows 

that Manage Demand is also invoking Create Requirement?). 

3. The Manage Product Backlog process creates requirements (e.g., user stories). 

Key Attributes Required by this Scenario 

Artifact Attributes Additional Information 

Conceptual Service ID Unique ID of conceptual service. 

Name This is the name easily identifying the service. 

Description This would represent the short description of a service. 

Portfolio Backlog 
Item 

ID Unique ID of portfolio backlog item. 

Portfolio This would be the portfolio name to which the backlog item 
is related. 

Summary This would represent the short description/title/summary of 
a given portfolio backlog item. 

Description This would be the full description; ideally supports rich text. 

Backlog Priority This priority is unique across all backlog items for a single 
portfolio. 
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Artifact Attributes Additional Information 

Backlog Status This status shows the state of the backlog item. Status 
would be used by both the business and IT to determine 
whether it was an agreed roadmap item, proposed, in 
progress, etc. 

Proposed Budget This would be requirement, defect, or known error. 

Fiscal Year This would indicate in which fiscal year the roadmap item 
(portfolio backlog item) is planned. 

IT Service ID/Name This needs to be at least the IT service name, but ideally it 
would be the IT service ID and service name. 

Requirement ID(s) This would be used to link a portfolio backlog item to one or 
more product backlog items (requirements). 

Scope Agreement ID This would be used to link a portfolio backlog item to a 
scope agreement. 

Requirement ID Unique ID of requirement. 

IT Service ID/Name This needs to be at least the IT service name, but ideally it 
would be the IT service ID from CMDB and the IT service 
name. 

Summary This would represent the short description/title/summary of 
a given requirement. 

Description This would be the full description; ideally supports rich text. 

Portfolio Backlog ID This would be used to link a product backlog item to a 
portfolio backlog item. 

Scope Agreement ID Unique ID of a scope agreement. 

Portfolio Backlog ID This would be used to link a scope agreement to a portfolio 
backlog item. 

IT Service ID/Name This needs to be at least the IT service name, but ideally it 
would be the IT service ID and the IT service name. 

Summary This would represent the short description/title/summary of 
a given scope agreement. 

Description This would be the full description; ideally supports rich text. 

Product Backlog Scenario 

Overview 

As made clear in the previous section, investments are divided into portfolios, which may have backlogs. 

This level is equivalent to the concept of “epics” within SAFe. Once product investments are authorized 

within a portfolio, each product has its own smaller-grained backlog, consisting of stories, defects, and so on. 
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New product backlog items can come from multiple sources, but should all be captured in a single repository 

for an individual IT service. The business may ask for enhancements to existing products, IT may identify 

known errors or operational issues that need to be remedied; there may be other defects in the products which 

need to be resolved. 

Requirements 

ID Requirements 

REQ.05 Ability to capture new enhancement requests or updates to existing enhancement requests in the 
product backlog: 

 IT Service 

 Summary 

 Description 

 Status 

 Priority 

REQ.06 Ability to add/modify unfulfilled requirements on the product backlog for an IT service: 

 IT Service 

 Summary 

 Description 

REQ.07 Ability to add/modify open project defects which are not resolved prior to going live on the product 
backlog for an IT service: 

 IT Service 

 Summary 

 Description 

REQ.08 Ability to add/modify known errors to the product backlog for an IT service: 

 IT Service 

 Summary 

 Description 

Process Flow 

Scenario: Manage Product Backlog
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REQ.05: Process requirements; log IT request 

Qualified product stakeholders may ask for a product to be enhanced. These requests need to be tracked in 

the product backlog which should exist for the entire lifecycle of the product. 
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The system should be able to track key information about the request such as the summary and description, 

status, and priority. The status should reflect information about the request such as if it is new, approved, 

rejected, or in-process. The priority of the request should indicate impact to the organization and reflect an 

order of importance with respect to other items in the product backlog. The product backlog should be able to 

be mapped to portfolio backlog items which are used to obtain approval by the business to fund an effort. 

Many companies have a standing portfolio backlog item representing a pre-approved fund to enhance a 

product based on the product owner’s discretion as delegated by the business. 

REQ.06: Record open requirements in product backlog 

There are times where requirements which were in scope for the project are unable to be met during the 

course of a project. In these cases, those requirements should remain in an open status in the system so they 

can be grouped into a future release of the IT service. The project or delivery team is responsible for making 

sure the unfulfilled requirements are reflected in the product backlog. 

REQ 07: Record open defect in product backlog 

There are times where a project defect is not so severe as to prevent the release of an IT service. In these 

cases, the defect still needs to be resolved in a future release and should be added to the product backlog so it 

can be implemented in the future. The project or delivery team is responsible for making sure the open 

defects are captured in the product backlog. 

REQ 08: Record open known error in product backlog 

When a problem is identified with an IT service, and the root cause is determined highlighting the need for a 

change to the IT service, that known error should be reflected in the product backlog so it can be 

implemented in the future. The problem manager is responsible for capturing known errors in the product 

backlog. 

 

Goal Explanation 

G.01 
G.05 

A product backlog should exist for an IT service throughout the service lifecycle. Since requests 
can come from many different sources such as the business and IT (projects and operations), it is 
important to have a single list (product backlog) of all potential changes to the IT service so the 
changes can be planned comprehensively. This promotes including operational changes and 
business changes in releases of an IT service which ultimately reduces the cost and effort as 
multiple items can be resolved with one project or initiative, thus preventing the ramp-up and 
deployment costs associated with multiple projects or initiatives to do the same. 

G.02 
G.06 

Many different software development methodologies may be used to create or enhance an IT 
service. Since we share resources among our delivery teams, and since different resources may 
work on various changes to various IT services, it is critical that some key information is stored in 
a similar fashion without regard to which methodology may be used on a given project/effort. By 
storing the data in the same repository and IT service, it then becomes a delivery team 
determination on how best to meet the needs of a given project/initiative. There is also no time 
lost between modifying data to fit one methodology or another. 

G.02 
G.07 

By adding end-user change requests, open items from the project delivery process, and open 
items from operational processes into a single repository, it allows the delivery team to go to a 
single centralized repository to see the details (or links to details) of all in-scope items, thus 
reducing time to otherwise review and consolidate various repositories. 
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Automation Specification Using the Reference Architecture 

The product backlog is a subset of requirements which are prioritized, associated with releases, and track 

status. Requirements come from business demand, defects, and known errors. 

The reference architecture supports the system of record functional components for requirement, defect, and 

problem which ultimately are the source of the individual items comprising the product backlog. 

The Requirement functional component becomes a key integration point between the Strategy to Portfolio 

and Requirement to Deploy value streams. 

Essential Services Supporting the Scenario 

 

The scenario calls for essential services that can: 

• Create/update a conceptual service 

• Create/update a portfolio backlog item 

• Create a scope agreement 
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Data Architecture 

 

The major entities include: 

1. Requirement 

2. Portfolio Backlog Item 

3. Defect 

4. Known Error 

See Kanban and Queueing (on page 54) for a discussion of how requirements, defects, and known errors 

might be consolidated with a common queuing interface. 
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Detailed Explanation on Reference Architecture Usage 

 

1. The Manage Service Portfolio process creates/updates the Conceptual Service. 

2. The Manage Demand process creates/updates portfolio backlog items (e.g., epics) (diagram shows 

that Manage Demand is also invoking Create Requirement?). 

3. The Manage Product Backlog process creates requirements (e.g., user stories). 

Key Attributes Required by this Scenario 

Artifact Attributes Additional Information 

Requirement ID Unique ID of requirement. 

IT Service ID/Name This needs to be at least the IT service name, but ideally it 
would be the IT service ID and the IT service name. 

Summary This would represent the short description/title/summary of 
a given requirement. 

Description This would be the full description; ideally supports rich text. 

Portfolio Backlog ID This would be used to link a product backlog item to a 
portfolio backlog item. 

Defect ID Unique ID of a scope agreement. 

IT Service ID/Name This needs to be at least the IT service name, but ideally it 
would be the IT service ID and the IT service name. 

Summary This would represent the short description/title/summary of 
a given defect. 
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Artifact Attributes Additional Information 

Description This would be the full description, ideally supports rich text. 

Known Error ID Unique ID of a known error. 

IT Service ID/Name This needs to be at least the IT service name, but ideally it 
would be the IT service ID and the IT service name. 

Summary This would represent the short description/title/summary of 
the known error. 

Description This would be the full description, ideally supports rich text. 

Proposed Changes to the IT4IT Reference Architecture for the Portfolio and Product 

Backlog Scenario 

ID Proposed Change Status 

1 Add new attributes to portfolio backlog item within the Portfolio Demand 
component as follows: 

 ID 

 Portfolio 

 Summary 

 Description 

 Backlog Status 

 Backlog Priority 

 Proposed Budget 

 Fiscal Year 

 IT Service ID/Name 

 Requirement ID 

 Scope Agreement ID 

Proposed 

2 Add new attributes to conceptual service within the Service Portfolio 
component as follows: 

 ID 

 Name 

 Description 

Proposed 

3 Add new attributes to requirement within the Requirement component as 
follows: 

 ID 

 IT Service ID/Name 

 Summary 

 Description 

 Backlog Status 

 Backlog Priority 

 Portfolio Backlog ID 

Proposed 
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ID Proposed Change Status 

4 Add new attributes to defect within the Defect functional component as follows: 

 ID 

 IT Service ID/Name 

 Summary 

 Description 

Proposed 

5 Add new attributes to known error in the Problem functional component as 
follows: 

 ID 

 IT Service ID/Name 

 Summary 

 Description 

Proposed 

6 Add new attributes to scope agreement in the Proposal component as follows: 

 ID 

 Portfolio Backlog Item ID 

 IT Service ID/Name 

 Summary 

 Description 

Proposed 
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DevOps and Automation 

DevOps and the IT4IT Reference Architecture 

DevOps is a notable trend in IT management. It is grounded in Lean and Agile theory, and enabled by 

advances in IT computing power and software and systems design. 

DevOps calls for a new mental model of change. Often, change and stability are seen as diametrically 

opposed. However, this can often result in deferring change, which results in larger accumulated “batches” of 

change. Complex systems do not respond well to such large perturbations. It is more effective to change them 

continually over time in small, controlled increments. This results in the paradoxical finding that more 

frequent change is better for stability. This can be counterintuitive for many IT professionals. 

There is a great deal of material available on DevOps, some of it discussed in this document. For further 

information on DevOps see the cited references, especially Continuous Delivery by Humble and Farley 

[Humble 2011]. 

Goals 

Goal Explanation 

DG.1 High automation of the code pipeline – build, test, migrate, release. 

DG.1.2 Entire pipeline from “Dev” to “Ops” is viewed as an integrated system. 

DG.2 Continuous integration. 

DG.2.1 Eliminate/minimize “branching” from the “mainline” of source. 

DG.2.2 Daily/ hourly code check-ins across all teams. 

DG.2.3 Automated software testing. 

DG.3 Develop against production-like environment. 

DG.3.1 Common build approaches used for all environments. 

DG.3.2 Focus on configuration management. 

DG.4 Architect for resiliency. 

DG.4.1 Focus on Mean Time to Recovery (MTTR), not Mean Time Between Failures (MTBF) 

DG.5 “Infrastructure as code”. 

DG.5.1 Configurations are scripted assets in source repositories, part of build. 

DG.5.2 Automation enables rapid provisioning and deployment. 

DG.5.3 Automated rollback, where possible. 
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The following matrix mapping People, Process and Technology to the IT4IT Value Streams is intended to 

illuminate how DevOps and the IT4IT standard interact. 

 

 S2P Value Stream R2D Value Stream R2F Value Stream D2C Value Stream 

People Establish common 
values and 
awareness 

Culture of systems 
engineering and 
collaboration 

Ops cross-pollination Training to develop 
and support maximum 
automation 

Dev on support 
frontline 

Process Matrix organization 
and service-aligned 
virtual teams 
supported by shared 
services engineering 

All queues identified 

Delivery and 
deployment cadence 

Reduced WIP 

Services designed for 
automation and self-
service through catalog 
and APIs 

Problem management 
feedback to R2D 

Technology Lifecycle 
Management & 
Automation 

Planning, reporting 

Metrics management 
(KPIs, MTBF, MTTR) 

Automate build, test, 
deployment 

Infrastructure 
virtualization and 
provisioning 
automation 

Automate monitoring, 
workload management 

Analytics 

DevOps Reference implementation 

An initial reference implementation of the DevOps scenario was undertaken using free and open source 

software [Betz 2015]. Products employed included: 

 

Product Role 

Ubuntu Linux Operating system 

Vagrant Virtual environment 

Chef Zero Virtual server provisioning 

Java Programming language & interpreter 

Junit Automated testing framework 

Apache Ant Language-specific build tool 

Apache Tomcat Application server 

Git Source control repository 

Jenkins Build choreography tool 

Artifactory Package repository 

https://wiki.opengroup.org/councils-wiki/doku.php?id=forums:it4it:agile:03-devops#betz2015
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Purpose 

One of the purposes of this effort was to ensure that the DevOps scenario was well grounded in technical 

fundamentals. Abstractions (e.g., “source code control”) need to have concrete examples, and interactions 

suggested by graphical lines need to be traceable to actual system relationships. 

The initial version of the pipeline explored the relationship between development, testing, and production 

environments. Various learnings are presented here in support of the architecture approach in the following 

sections. 

Learnings 

There were a number of learnings and insights generated by this effort: 

• The importance of representing subject systems and environments in the IT4IT pipeline (e.g., “developer 

workstation,” “production server”) 

• Clarifying the relationship between artifact and data object 

• Maven coordinates and semantic versioning (see Maven Coordinates and Semantic Versioning, below) as 

emergent metadata standards 

• Relationship between source and package repository 

• Role of testing practices versus test management systems 

Systems and Environments 

The IT4IT Reference Architecture has not formally represented the computing systems producing and being 

produced as a result of the IT Value Chain. However, in attempting to produce a well grounded DevOps 

reference architecture, it is helpful to represent concepts such as a “development environment”, “build 

environment”, and “production environment”. These are intended abstractly. Particular technologies were 

chosen for the reference implementation (e.g., Java and Tomcat) but alternatives could also be used (e.g., 

Javascript and node.js). 
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Figure 11: Example Development Environment 

With the increasing power of infrastructure and reach of cloud, there are many variations on how 

development environments are constructed. A local physical PC used by a developer may employ a 

hypervisor (VirtualBox or boot2docker) with development and execution carried out in a virtual layer. The 

virtual layer increasing is built consistently with production environments through infrastructure as code 

(e.g., Chef recipes) under shared source control. 

Others may still run an execution environment such as Tomcat directly on the base OS, without an 

intervening virtual layer; however, this approach seems to be falling out of favor. 
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Figure 12: Development Pipeline 

In Figure 12, artifacts flow through the pipline (green nodes) through the pipeline control infrastructure (blue 

components). Additionally, the following interactions are not shown on the diagram: 

• The Source Control component may hold infrastructure definitions for the environments. 

• The Fulfilment Engine may instantiate and provision the base environments as well as installing 

packaged artifacts on them. 
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Artifact and Data Object 

As of early 2015, the IT4IT standard is moving towards replacing the term “artifact” with the term “data 

object”. The insight from this reference implementation is that both terms are in fact needed. (This is also 

consistent with the ArchiMate® standard,2 which views “artifact” as a Technology Layer construct, while 

Data Object and its analog Business Object are constructs of the Application and Business Layers, 

respectively.) 

The concept of an “artifact” is represented in the Calavera simulation by the following files: 

• *.java 

• *.class 

• *.jar 

• *.xml 

While such artifacts may follow well-defined syntax, they are arbitrarily complex. Therefore, a metadata 

layer emerges to manage them. Metadata is built from concise textual fragments, made consistent and 

suitable for structured data management at scale. Examples include: 

• File name and extension 

• File location 

• Commit identifier (from version control system) 

• Author/developer 

• Build # and date 

• Version (see Maven Coordinates and Semantic Versioning, below) 

• Associated project or release 

These attributes are “meta” in the sense that they are not directly required for the runtime functioning of the 

system, but rather assist in human understanding of its characteristics. Such basic attributes, when 

aggregated and normalized into schemas, are the foundation of structured IT management and therefore the 

IT4IT standard. 

Many other examples exist, and specific artifacts may have extensive metadata (especially those artifacts 

having to do with structured data management; e.g., data models and data definition schemas). 

 

2 ArchiMate® 2.1 Specification, Open Group Standard (C13L), December 2013, published by The Open Group; refer to: 
www.opengroup.org/bookstore/catalog/c13l.htm. 

http://www.opengroup.org/bookstore/catalog/c13l.htm
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Figure 13: Relationship of IT4IT Data to Artifacts 

Figure 13 graphically shows the relationship between artifacts and their metadata (aka IT4IT data). 

Maintaining the traceability between artifact and data object is a critical requirement across the IT4IT 

Reference Architecture. The originating point for this critical metadata is often the application manifest, 

although there is no industry standard. Build tools are also important, as they retain the record of when and 

how a given release package was constructed. 

Maven Coordinates and Semantic Versioning 

Two important developments in metadata are Maven coordinates and semantic versioning.3 

Maven coordinates consist of the following: 

• groupID; e.g., org.apache.maven 

• artifactID; e.g., a project or application identifier (not a filename) 

• version 

• packaging 

A fifth attribute, “classifier,” is sometimes used. 

Semantic versioning can be used as the basis for the version ID; according to semver.org, it consists of the 

following rules: 

Given a version number MAJOR.MINOR.PATCH, increment the: 

• MAJOR version when you make incompatible API changes 

• MINOR version when you add functionality in a backwards-compatible manner 

 

3 More information about Maven is available here: https://maven.apache.org. Maven coordinates are documented here: 
https://maven.apache.org/pom.html. 

https://maven.apache.org/
https://maven.apache.org/pom.html


IT4IT™ Agile Scenario 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  41 

• PATCH version when you make backwards-compatible bug fixes 

12 Factor Principles 

12-factor architecture principles4 also provide insight into the conceptual data structures used by DevOps 

[Wiggins 2015]. The combination of these influences can be represented as a conceptual metamodel: 

business 12FactorMetamodel

Product
In the Potentially 

Shippable Increment 

sense, not the Release 

Train sense. 

Deploy

Resource

ServiceNode

MachineVMContainer

Release

Env

Application or Service in 

the ITSM sense

A collaboration of 

specialized, deployed 

Products (e.g. git, 

Jenkins, Artifactory)

Service in the 

microservice sense.  "a 

single application as a 

suite of small services" 

per Fowler.

Pipelines are few, but not

necessarily unique. They 

are not infinitely scalable. 

Pipeline

Commit Build

 

Figure 14: DevOps/12Factor Metamodel 

 

4 See http://12factor.net/. 

http://12factor.net/
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The combination of basic file metadata, commit/build/release metadata, Maven coordinates, and semantic 

versioning provides a foundation for IT4IT metadata. Most major IT management constructs can be 

understood as derivative and/or dependent: 

• Service and application IDs 

• Release and change IDs 

• Work tickets of various types: requirements, scenarios, stories, issues, risks, action items, incidents, 

service requests 

Source and Package Repositories 

The reference implementation clarified the relationship between source and package repositories. In years 

past, it has been common practice for compiled binaries to be stored in the same repositories as source code. 

However, this is no longer deemed best practice. Source repositories should be reserved for symbolic artifacts 

that can be meaningfully versioned, with differences represented in a human-understandable way. Package 

repositories in contrast are for binary artifacts that can be deployed. 

Package repositories have a further additional role as proxy to the external world of downloadable software. 

For example, developers are directed to download the approved Java version from the local package 

repository, rather than going to the Oracle or OpenJDK site and getting the latest version, which may not be 

suitable for the environment. 

Package repositories are also used (as indicated in Figure 12) to enable collaboration between teams working 

on larger applications. Teams check built components into the package repository for other teams to 

download, rather than everyone always building all parts of the application from source. 

In these uses, package repositories serve as an important control point in reducing variability in the IT 

pipeline; reducing such variability is one of the overall goals (G0.6.6) for the Agile work stream. 

Testing Practices versus Test Management Systems 

Finally, the IT4IT Reference Architecture presumes a test management system, but it is important to 

distinguish between tests that are written and executed internally to the application versus tests that are 

external. 

For example, a suite of tests based on JUnit does not require an external “test management system” to run. 

JUnit is incorporated into the development and build environments as a library include. Tests are written as 

Java source code in a particular manner to be interpreted by JUnit. 

On the other hand, an external “black box” testing capability can be seen as its own functional component or 

system. Examples would include Apache Jmeter, SOASTA, or Stormrunner (aka Loadrunner). 

Yet other testing products can be run as either a locally included capability, or an external service. Examples 

include Selenium. 

Finally, some Agile testing philosophies (test-driven design, behavior-driven design) start to converge test 

definition with functional requirements. In this sense, the Test Management component overlaps with the 

Requirements Management component. 



IT4IT™ Agile Scenario 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  43 

Future Directions for Simulation 

The following features were deferred to future versions: 

• Source code QA (e.g., static analysis) 

• Code review collaboration enablement 

• Test-driven infrastructure as code 

• Defect and issue tracking 

• Integration testing 

• Monitoring and automated rollback 

• Full ITSM suite integration 

Continuous Deployment Scenario 

Overview 

In the previous section, scenarios were discussed that had been proven using a reference implementation. 

This section takes a broader view of some of the use-cases described in current industry practice and 

represents them in terms of the IT4IT Reference Architecture; a full reference implementation is pending. 

The core continuous deployment scenario is described thus: 

Develop and deploy software functionality from development to operations in a maximally automated model, 

with sustainable velocity and demonstrating effective feedback. 

Eric Minick (formerly of UrbanCode, now of IBM) suggests a set of overlapping, cumulative DevOps use-

cases [Minick 2012] including: 

• Build software 

• Deploy software 

• System testing on deployment 

• Continuous delivery with monitoring and rollback 

We will adopt this set to start as our process requirements. 

Note that this set does not include infrastructure as code. 

It is essential in reading these scenarios to understand that they are intended to be run frequently and 

iteratively. Without this, the core Agile goals of fast feedback and maximizing information are not realized. 

Process Requirements 

CD.REQ.01: Build software. 

In this scenario software is constructed, tested, incorporated into a mainline trunk, and built into releasable 

packages on an ongoing basis. This is the basic Continuous Integration use-case.  
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CD.REQ.02: Deploy software. 

In this scenario software is pulled from the package repository and applied to target environments in a 

repeatable fashion.  

CD.REQ.03: System testing on deployment. 

In this scenario system-level tests are applied to the deployed packages. 

CD.REQ.04: Continuous delivery with monitoring and rollback. 

This scenario applies monitoring, event management, and automated rollback to the previous. 

As an ITSM Flow 

This is a view of the end-to-end flow, interpreted in terms of well-known ITSM processes. 

analysis Dev Ops - ITSM scenario

SCENARIO - Core DevOps

Requirements

Management

Service Development (ITSM) Service Validation

and Testing

(ITSM) Release and

deployment management

This can be 

implemented by 

Kanban, but Kanban is a 

mechanism that may be 

used for other forms of 

demand.

(ITSM) Change

Management

(ITSM) Change evaluation

(ITSM) Event Management

(ITSM) Incident

Management

(ITSM) Problem

Management

Rollback
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Automation Specification 

A variety of sources [Edwards 2012], [Minick 2012], [Thompson 2014], [Shortland 2012], [Betz 2011] 

suggest some common architectural elements, named here as encountered and mapped to the suggested IT4IT 

component: 

 

DevOps Component Example Recommended IT4IT Mapping 

Source Repository 
Software Configuration Management 

Git, Mercurial Source Control Component 

Software Configuration Management ”“ ”“ 

Continuous Integration and Build 
Management 

Jenkins, Travis, Bamboo Build Component 

Test Management Cucumber, RSpec, JUnit Test Component, except in the case 
of embedded testing (e.g., JUnit) 

Package Repository Nexus, Artifactory Package Component (new) 

Infrastructure Manager Chef, Puppet Fulfillment Execution Component 

Deployment Engine ”“ ”“ 

Deployment Console ”“ ”“ 

Configuration Management Database BMC Atrium Configuration Management 
Component 

Event Management Netcool Service Monitoring & Event 
Components 

Element Management  Combination of Fulfillment Execution, 
Service Monitoring, and Event 
Components 
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Figure 15: Build Scenario 
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Reading the diagram from left to right: 

1. First, code is checked into the Source Control component. (This has been renamed from Service 

Development Component, Q1 2015.) 

2. This triggers workflow to start the new build. This may be done immediately, or on a batch basis 

(i.e., the nightly build). 

3. The Build Management component, performing Continuous Integration, may run tests (invoking 

the Test Management component), including functional tests as well as external static analysis if 

called for. Test execution may result in defects being logged. However, builds that fail because 

embedded unit tests fail may not result in defects. They may simply be “failed builds” and 

investigated and remediated on that basis. See note in previous section on testing practices versus 

testing systems. 

4. If the build succeeds, the built package is stored in the Package Control component (added to 

IT4IT Reference Architecture early 2015). 

Data Layer 

As covered in the simulation discussion, the concepts of artifact and data object must be kept distinct, with 

traceability between the two. The Source Control component must associate the source code with the service 

ID and version, and the build process develops further information including tests applied, build metrics, and 

any defects detected. 

The package record is distinct from the actual packaged artifact, consisting again of metadata such as 

publication status, date, URL, traceability back to the build record, and so on. 
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Figure 16: Deployment to Target 

1. First, some event (automated; e.g., from a successful build, or human initiated) has initiated the 

deployment process. 

2. A proposed change has been submitted to and approved by the Change Control component (this 

may be a standard change and approved in an automated manner). 

3. The actual artifacts/package are pulled from the Release Composition component into the 

deployment management system(s) and applied to the target system. 
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4. Monitoring is established or updated. 

5. The CMDB component is updated as required with any new dependencies or other information 

originating from the package manifest. 

Data Layer 

The service may be decomposed into service release and package. The RFC minimally must be associated 

with the service and optionally the release and/or package. Fulfillment Request represents work tracking 

additional to/driven by the RFC. The target must be specified and upon successful deployment the CMDB 

must be updated with the service/target dependency and any other new items or dependencies as appropriate.  

application Scenario 3

Fulfi l lment Execution Component

Fulfi l lment Engine and

Deploy/Provision Component

Install/configure

Report drift

Report configuration

Test Management Component

Track tests

Execute tests

Defect Management Component
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Target Environment

Deploy

Test Case DefectFulfi l lment Request
Data layer

«flow» «flow»

 

Figure 17: Test on Deploy 
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6. Per the last scenario, some event has resulted in the deployment of software to a target system. 

7. The Test Management component executes system-level, integration, and/or performance tests 

against the target system (which may be any environment). 

8. Results (as in the first scenario) are recorded in the Defect Management component. 

The reader may note that Incident Management is not included in this scenario; it is in the next one. 

Data Layer 

The Fulfillment Request (deriving from the Request for Change) drives the application of one or more test 

case(s). These would be typically systems or integration tests, such as performance testing suites. Issues 

resulting from the test cases would be registered in the defect system. 
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Figure 18: Automated Incident Detection and Rollback 

1. The software is now deployed into an environment with some level of operational monitoring, 

starting at the lowest service monitoring level; e.g., probes and log monitors that detect the basic 

operational status of the managed element. 

2. The Service Monitoring component then raises events into an Event Management component 

(sometimes called a manager of managers). 
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3. The Event Management component draws upon CMDB dependencies and its own business rules to 

determine whether an actual Incident should be declared. 

4. The Incident is declared and, if severe enough, may warrant rollback of the change (via a new 

Change Request). 

5. The proposed rollback of the Change is approved via the Change Control component. 

6. The Deployment Management system then reverses the change (e.g., through pulling the previous 

build and re-deploying it). 

7. (Not shown) Causal analysis and remediation then are presumed to occur. 

Data Layer 

One or more Events are recognized against a known pattern resulting in the registration of an Incident against 

the Service. If rollback is decided, a new Change (RFC) is created (and usually expedited). This then creates 

a work order in the fulfillment engine, resulting in the removal/reversion of the installed package. 

Notes: 

• There are various patterns for the roles that element monitors, event managers, and incident systems play, 

but a three-tier pattern is often seen. 

• The term Service Monitoring component is a bit of a misnomer, as true service-awareness is not 

understood at the element or system level, but rather require the dependencies from the CMDB. 

Data Architecture 

Data Object Attributes Additional Information 

Build Build ID Unique identifier for a Build 

Deployment Target 
(Configuration Item) 

CI ID Configuration Item unique identifier, 
representing a CI that is a valid deployment 
target 

Defect Defect ID Unique identifier for a Defect 

Event Event ID Unique identifier for an Event 

Fulfillment Request Fulfillment Request ID Unique identifier for a Fulfillment Request 

Incident Incident ID Unique identifier for an Incident 

”“ Incident severity Relative priority/impact of Incident (perhaps 
derived from service management); used to 
determine if rollback is called for 

Package Package ID Unique identifier for a Package 

Release Release ID Unique identifier for a Release 

Request for Change Change ID Unique identifier for an RFC 
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Data Object Attributes Additional Information 

Product/Service Product/Service ID Unique identifier for a Product/Service 

”“ Product/Service Version Identifies the version of a service 

Test Case Test Case ID Unique identifier for a Test Case 

Proposed Changes to the Reference Architecture for the DevOps Scenario 

Two changes have been proposed by the Agile work stream and accepted: 

• The creation of a Package component 

• The renaming of the Service Development component to Source Control component 
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Kanban and Queueing 

Kanban Scenario 

Overview 

A critical concern for Agile product development is identifying where queues are prescribed, and therefore 

where work-in-process may accumulate and where demand is expressed for the end user. As Don Reinertsen 

notes [Reinertsen 2009]: 

“Queues matter because they are economically important, they are poorly managed, and they have the 

potential to be much better managed. Queues profoundly affect the economics of product development (IT 

services are a form of product). They cause valuable work products to sit idle, waiting to access busy 

resources. This idle time increases inventory, which is the root cause of many other economic problems. 

Queues hurt cycle time, quality, and efficiency. Despite their economic importance, queues are not managed 

in today's development processes. Few product developers are aware of the causal links between high 

capacity utilization, queues, and poor economic performance. Instead, developers assume that their cycle 

times will be faster when resources are fully utilized. In reality, high levels of capacity utilization are actually 

a primary cause of long cycle time. 

Manufacturing companies use operations theory to identify bottlenecks and eliminate them – they have 

identified the value chain is only as good as the weakest link (or weakest capacity). Little’s Law and 

associated rules can be adopted for modeling the service value chain and eliminate both bottlenecks and 

waste.” 

It is a very interesting question, but beyond the scope of this document, as to how queues emerge in a 

cooperative environment. There is some indication that queues proliferate as environments become more 

specialized. At a certain point, this seems to become dysfunctional. See [Leffingwell 2010], [Larman 2009], 

and [Reinertsen 2009]. 

The Kanban movement is responding to this by essentially centralizing heterogeneous demand into 

simplified, common queuing mechanisms. A given team’s Kanban board may encompass Requirements, 

Changes, Service Requests, Work Orders, and even Incidents and Problems – anything that results in 

someone spending some time on it. Which of these the Kanban board includes depends on the context and 

function(s) of the team in question. 
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Figure 19: Heterogeneous Kanban Board 

This industry direction, while clear, remains largely undocumented. The reader is referred to Ian Carroll’s 

website IT Ops Kanban [Caroll 2013] and the 2014 presentation by ING Bank: ITIL and DevOps at War in 

the Enterprise [Bouwman 2014]. In that presentation, one of the presenters specifically discourages the use of 

a problem ticket in a service management tool if the problem is also a user story. Similar themes can be found 

in Kim’s “The Phoenix Project” [Kim 2013] and in Limoncelli’s “The Practice of Cloud System 

Administration” [Limoncelli 2014], p.184: 

“Development and operations can best speak the same language by using the same tools wherever possible. 

This can be as simple as using the same bug-tracking system for both development and 

operations/deployment issues.” 

This seemingly simple advice is contradictory to operating models based on differentiated process 

architectures, such as those based on ITSM implementations. 

The IT4IT Reference Architecture therefore explicitly identifies the functional components that imply queues 

and is working towards a logically unified queuing interface so that demand may be understood globally 

across the IT Value Chain. Some initial requirements for this follow. 

Requirements 

Here is a high-level representation of IT4IT functional components possibly containing queues: 

Some initial requirements for this might be: 

 

Process Requirements 

Unified demand KQ.REQ.01 A view of unified demand should be possible via 
integrating all queues 
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Process Requirements 

Universal queue identification KQ.REQ.02 All functional components that contain queues 
should be identified 

Common backlog KQ.REQ.03 Support a common backlog for development and 
infrastructure tasks 

Cumulative flow KQ.REQ.04 Cumulative flow metrics should be available on all 
queues 

Integrate queues KQ.REQ.05 Smaller silo queues need to be integrated into 
longer, cross-functional, higher value queues 

Queue data management KQ.REQ.06 Queue data should have common aggregation into 
a business intelligence environment (consider 
process mining) 

Queue definition KQ.REQ.07 Accommodate the need of self-organizing teams to 
define their own queues, especially lifecycle states 
(e.g., “definition of done”) 

Process Flow 

The process questions here are meta-questions: 

• How can queues be recognized, managed, and rationalized? 

Continuous improvement approaches are often used for this. 

Automation Specification 

Here is a high-level representation of IT4IT functional components possibly containing queues: 
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Figure 20: Components Potentially Containing Queues in the IT4IT Reference Architecture 

For clarity, here is a list of the identified components: 

• Proposal component 

• Portfolio Demand component 

• Requirement component 

• Project component 

• Defect component 

• Request Rationalization component 

• Offer Consumption component 

• Fulfillment Execution component 

• Diagnostics & Remediation component 

• Change Control component 

• Event component 

• Incident component 
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One possible enabling solution is to define a simple abstract queuing interface, specifying which components 

implement it. 

application ProcessSubtypes

Queue

IT Project

Scope 
Agreement

Portfolio 
Backlog Item

Requirement

Defect

Request

Fulfillment 
Request

Incident

Event

RFC

Task

1 *

 

Figure 21: Common Process Class with Subtypes 

A similar approach is seen in [Betz 2011a], p.102, where the following entities are defined as subtypes of a 

master process entity: 

• Demand Request 

• Project 

• Release 

• Change 

• Service Request 

• Transaction 

• Incident 

• Improvement Opportunity 

• Risk 

• Problem 
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Other queues seen in the development world include: 

• User story 

• Requirement 

• Defect 

• Requirement 

• Epic 

• Issue 

• Risk 

• Action item 

Conceptual Architecture 

There are two conceptual classes: Queue and Task. 

It is not necessary to define a complex behavioral interface; common data attributes across the queues would 

add a great deal of value. If all process entities derive from a common type, what does that type require that 

can apply to all processes? 

Any Queue should be able to provide the following information: 

• Basic identity information; e.g., “Incident” 

• A collection of its Tasks, preferably filtered 

• Any given Task, if provided its ID. 

• Cumulative Flow Diagram aggregate metrics: 

• Arrivals 

• Time in Queue 

• Quantity in Queue 

• Departures 

Any Task should be able to provide the following information: 

• Identify its Queue; e.g., “Incidents” 

• Identity information; e.g., “Oracle outage” 

• Process (e.g., what is its current parent Queue?) 

• Priority 

• Performers (who is it currently assigned to and what is the referral history?) 
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• Partners (pre and post-dependent Tasks) 

• Parents (overarching/aggregate Tasks) 

• Estimated completion 

• Current status 

The following attributes are proposed for the two classes, considered as entities: 

 

Artifact Attributes Additional Information 

Queue ID Globally unique identifier for the queue 

”“ QueueName The process name; e.g., Story, Change, Request 

”“ LifecycleStates Enumeration of valid lifecycle states 

Task ID Enumeration of valid lifecycle states 

”“ QueueID The foreign key for the parent queue; e.g., Change or 
Request 

”“ Performer The party currently responsible for it 

”“ Precondition What needs to occur previously? 

”“ Postcondition What must occur afterwards? 

”“ Parent Is there a containing task? 

”“ Priority Within the scope of the process type, what is the 
priority? 

”“ AnticipatedCompletion When is completion anticipated? 

Further work is needed regarding: 

• Mutability and historical tracking (audit trails) 

• Cross-process prioritization (global prioritization) 

• Task estimation 
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Acronyms and Abbreviations 

CMDB Configuration Management Database 

CMMI Capability Maturity Model Integration 

DevOps Development and Operations 

DIA DevOps Implementation Approach 

DIM DevOps Implementation Model 

DMM DevOps Maturity Model 

IT Information Technology 

ITIL Information Technology Infrastructure Library 

ITSM IT Service Management 

KPI Key Performance Indicator 

MTBF Mean Time Between Failures 

MTTR Mean Time to Recovery 

RUP Rational Unified Process 

SAFe Scaled Agile Framework 

SIT System Integration Testing 

TOSCA Topology and Orchestration Specification for Cloud Applications (OASIS) 

UAT User Acceptance Testing 

WIP Work-in-Process 
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