

IT4IT™ Agile Scenario

Using the Reference Architecture

A White Paper by:

The Open Group IT4IT Forum Agile Work Group

February, 2016

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 2

Copyright © 2016, The Open Group

The Open Group hereby authorizes you to use this document for any purpose, PROVIDED THAT any copy of this document,

or any part thereof, which you make shall retain all copyright and other proprietary notices contained herein.

This document may contain other proprietary notices and copyright information.

Nothing contained herein shall be construed as conferring by implication, estoppel, or otherwise any license or right under any

patent or trademark of The Open Group or any third party. Except as expressly provided above, nothing contained herein shall

be construed as conferring any license or right under any copyright of The Open Group.

Note that any product, process, or technology in this document may be the subject of other intellectual property rights

reserved by The Open Group, and may not be licensed hereunder.

This document is provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied

warranties, so the above exclusion may not apply to you.

Any publication of The Open Group may include technical inaccuracies or typographical errors. Changes may be periodically

made to these publications; these changes will be incorporated in new editions of these publications. The Open Group may

make improvements and/or changes in the products and/or the programs described in these publications at any time without

notice.

Should any viewer of this document respond with information including feedback data, such as questions, comments,

suggestions, or the like regarding the content of this document, such information shall be deemed to be non-confidential and

The Open Group shall have no obligation of any kind with respect to such information and shall be free to reproduce, use,

disclose, and distribute the information to others without limitation. Further, The Open Group shall be free to use any ideas,

concepts, know-how, or techniques contained in such information for any purpose whatsoever including but not limited to

developing, manufacturing, and marketing products incorporating such information.

If you did not obtain this copy through The Open Group, it may not be the latest version. For your convenience, the latest

version of this publication may be downloaded at www.opengroup.org/bookstore.

ArchiMate®, DirecNet®, Making Standards Work®, OpenPegasus®, The Open Group®, TOGAF®, UNIX®, UNIXWARE®,

X/Open®, and the Open Brand X® logo are registered trademarks and Boundaryless Information Flow™, Build with Integrity

Buy with Confidence™, Dependability Through Assuredness™, FACE™, the FACE™ logo, IT4IT™, the IT4IT™ logo, O-

DEF™, Open FAIR™, Open Platform 3.0™, Open Trusted Technology Provider™, Platform 3.0™, and the Open O™ logo

and The Open Group Certification logo (Open O and check™) are trademarks of The Open Group. All other brands,

company, and product names are used for identification purposes only and may be trademarks that are the sole property of

their respective owners.

Apache™ is a trademark of the Apache Software Foundation.

CMMI® is registered in the US Patent and Trademark Office by Carnegie Mellon University.

ITIL® is a registered trademark of AXELOS Ltd.

Java® is a registered trademark and OpenJDK™ is a trademark of Oracle Corporation in the United States and other countries.

IT4IT™ Agile Scenario

Document No.: W162

Published by The Open Group, February, 2016.

Any comments relating to the material contained in this document may be submitted to:

The Open Group, 44 Montgomery St. #960, San Francisco, CA 94104, USA

or by email to:

ogspecs@opengroup.org

http://www.opengroup.org/bookstore
mailto:ogspecs@opengroup.org

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 3

Table of Contents

Executive Summary ... 4

Introduction .. 5

Version of the Reference Architecture ... 5

Business Context: Agile and Lean IT .. 6

DevOps .. 8

Bi-Modal IT .. 14

Kanban ... 14

Scaled Agile Framework (SAFe) .. 14

Agile and the IT4IT Framework ... 14

Business Goals .. 16

Portfolio and Product Backlog ... 20

Portfolio Backlog Scenario ... 20

Product Backlog Scenario .. 26

Proposed Changes to the IT4IT Reference Architecture for the Portfolio and

Product Backlog Scenario .. 32

DevOps and Automation .. 34

DevOps and the IT4IT Reference Architecture ... 34

DevOps Reference implementation ... 35

Continuous Deployment Scenario ... 43

Proposed Changes to the Reference Architecture for the DevOps Scenario . 53

Kanban and Queueing ... 54

Kanban Scenario ... 54

References ... 61

Acronyms and Abbreviations ... 64

Acknowledgements .. 65

About the IT4IT™ Forum ... 66

About The Open Group ... 66

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 4

Boundaryless Information Flow

achieved through global interoperability

in a secure, reliable, and timely manner

Executive Summary

This is one of a series of documents describing how to apply the IT4IT Reference

Architecture, an Open Group Standard, to various different scenarios related to

managing the business of IT.

This document describes the application of the IT4IT Reference Architecture to the

area of Agile Development using techniques such as DevOps and Kanban.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 5

Introduction

Figure 1: Value Stream Overview

The Open Group IT4IT Forum Agile Work Group is chartered with the following scope:

• To develop patterns, scenarios, and perspectives demonstrating utility of the IT4IT Reference

Architecture for Lean and Agile delivery, including DevOps

• To identify specific changes to the IT4IT Reference Architecture as needed to better support Agile

delivery

• To contribute to positioning IT4IT specifically with reference to SAFe, Kanban, SCRUM, and other

Agile methods

This document is the Agile Work Group’s first deliverable.

Version of the Reference Architecture

This document is based on Version 2.0 of the IT4IT Reference Architecture.1

1 The Open Group IT4IT™ Reference Architecture, Version 2.0, Open Group Standard (C155), October 2015, published by The Open Group; refer to:
www.opengroup.org/bookstore/catalog/c155.htm.

http://www.opengroup.org/bookstore/catalog/c155.htm

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 6

Business Context: Agile and Lean IT

The Agile movement represents many years of successful industry application, supported by robust theory,

and increasingly defines both the goals of Information Technology (IT) management as well as its execution.

Agile methods and philosophy, originating from the challenges of IT, are informing business strategy well

beyond the confines of traditional IT. Business strategies are turning to an emphasis on business

experimentation; e.g., “Fail Fast” and “Think Big, Start Small” [Ries 2011]. These strategies require

corresponding IT agility: moving from large “batches” of project requirements to the software equivalent of

Lean “single-piece flow”.

There are many books and other resources available describing Agile and the reader is referred to the

references, especially [Humble 2011], [Reinertsen 2009], and [Burrows 2015] as initial reading.

Figure 2: Lean, Agile, DevOps, and Related Conceptual Framing

“Lean” is the overall philosophical framework, generally credited to Ohno and others at Toyota [Ohno 1988],

with the name “Lean” first applied by Krafcik [Krafcik 1988], and further Western development and

popularization by Womack, Jones, Liker, and others [Womack 1990], [Womack 2003], [Liker 2004].

Another key related source is the “Theory of Constraints” developed by Eli Goldratt [Goldratt 1997],

[Goldratt 2004].

The application of Lean philosophy to software engineering is closely related to the term “Agile,” as in

“Agile Development”. The often-cited “Agile Manifesto” [Alliance 2001] states:

“We are uncovering better ways of developing software by doing it and helping others do it. Through this

work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 7

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.”

The Poppendiecks were early appliers of Lean principles to software development [Poppendieck 2003],

[Poppendieck 2007]. David Anderson has popularized the Toyota Production System term “Kanban” as a

form of collaborative work management for software product teams, focused on self-organizing teams

strongly concerned with flow and limiting work in process [Anderson 2010]. Rational Unified Process author

Dean Leffingwell has developed the Scaled Agile Framework (SAFe) [Leffingwell 2010].

Leffingwell, the Poppendiecks, and Anderson all cite the influence of Don Reinertsen [Reinertsen 1997],

[Reinertsen 2009]. Reinertsen specializes in Lean product development and has developed a set of theoretical

perspectives based on economics, queuing theory, statistics, and related topics.

The Phoenix Project is a notable exploration of the Lean, Agile, and DevOps themes [Kim 2013].

Plan Develop Build Test Release Operate

Success measured in speed of

application delivery to production

Traditional Challenges

• Manual release processes

• Agile overloads testing teams

• Build and tear down overhead

of environments

• Lack of production and usage

feedback into development

• Inefficient hand-offs between

tools

• Security an afterthought

and not a focus

Functional

Performance

Virtualize

Security

Instrument

Figure 3: Challenges of the IT Value Chain

As seen in Figure 3, the IT Value Chain has a number of challenges. Manual processes, silo walls between

development and operations, and poorly integrated tools are some of the problems seen in the legacy methods

to IT product development.

Within the general framing of Lean and Agile methods for IT delivery, this scenario reflects and explores

several major Agile currents:

• DevOps

• Bi-modal IT (Gartner)

• Kanban

• Scaled Agile Framework (SAFe)

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 8

DevOps

“DevOps” (the DevOps response) is a set of innovative practices emerging in reaction. Coined as a

portmanteau representing “Development” and “Operations” (Patrick Debois is generally credited with

originating the term), it represents the specific concerns of accelerating flow and software delivery from

ideation through production, extending Agile philosophy from its traditional home in software development

into operational domains. Fast feedback is a critical objective.

Automated, Integrated, Collaborative

Desired Outcomes

• Improved quality of initial

code development

• Accelerated and streamlined

release cycle

• Optimized dev., build, and

test process

• Reduced test and delivery

bottlenecks

• Meshed tool chain, with

integration and abstraction

• Security and compliance built

into the end-to-end process

Plan Release Operate

Test

Functional

Performance

Virtualize

Security

Instrument










Validate



Develop

Build

Collaboration

Provision & Deploy

FeedbackFeedback

Figure 4: The DevOps Response

Hammond and Allspaw’s “10 Deploys per Day: Dev & Ops Cooperation at Flickr” is a key document

[Allspaw 2009] and Humble and Farley’s “Continuous Delivery” is the first comprehensive text on the

subject [Humble 2011].

For the purposes of this document, Kanban and DevOps, as with other terms like SCRUM and Extreme

Programming, are seen as specific manifestations of Agile, which is in turn an IT-centric manifestation of

Lean.

Some argue that DevOps must transcend Agile, as the broader term. However, if the Agile Manifesto does

not apply to IT operations, it is difficult to see how DevOps can succeed in its goals. Such conceptual

questions are of course difficult to settle definitively.

DevOps Definition

DevOps is a way of collaborating and industrializing using highly automated approaches to deploy solutions

that evolve as fast as your business needs it. By adopting DevOps an organization can dramatically improve

the value delivered by its business. The team-centric DevOps ethos tears down traditional silos to tightly

integrate business, development, and operations to drive agility and service delivery excellence across the

entire lifecycle.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 9

DevOps Maturity Model (DMM)

To achieve the DevOps vision, the following maturity model can be defined:

Level 1: Basic – At the basic level, the following characteristics are apparent:

Level 1: Basic

Traditional siloed organization | separate processes | separate tools with many manual activities |

typically very long release duration and high outages

Level 2: Emerging

Emergence of joint teams | starting to establish connected processes | some automation &

isolated tools | medium release duration & reduced outages

Level 3 : Co-ordinated

Joint and shared objectives | dev2ops connected lifecycle | limited manual

processes | low release duration & significantly reduced outages

Level 4 : Enhanced

Co-authoring of solutions | one lifecycle | no manual processes +

end-to-end managed environments

Level 5 : Top Level

One team | dynamic process | near instant deployment of

changes | no dev-related outages

Figure 5: DevOps Maturity Model (Notional)

• People: Separate strategy, design, development, testing, and live operations teams. Complete lack of

terms of references. No joint sessions, get-togethers. Teams focus on their own direct targets and

objectives only. No joint or shared objectives and no overall reward system. People only feel accountable

for their immediate area – no common or overarching ownership.

• Process: Separate and disconnected processes are place which are ad hoc, reactive, and chaotic. No

common end-to-end process framework, no common sign-off criteria or any joint solution design

characteristics that support appropriate “–ilities” (availability, stability, flexibility).

• Tools: No automation tools, majority of activities are manual, ad hoc, and unplanned. No integration

between hardware provisioning, operating system installation/configuration, and middleware/application-

related provisioning/installation. No sharing of joint configuration information with all information being

stored and retained in different repositories.

Level 2: Emerging – At the emerging level, the following characteristics are apparent:

• People: Limited changes to basic – still very siloed and separate teams with no single team/person taking

end-to-end responsibility. Developers mainly focus on functional requirements with very limited focus

on non-functional requirements. However, there is the emergence of some shared/joint touch points

where some developers and some operational staff engage.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 10

• Process: Limited changes to basic – there are some attempts to establish better managed processes;

however, these are restricted to specific environments only; i.e., covering development or User

Acceptance Testing (UAT) only.

• Tools: Some minor changes to basic, mainly targeted at developing automatic scripts covering hardware

and operating system-related aspects. As per basic these are mainly targeted at the development

environments. Most other environments such as testing, training, System Integration Testing (SIT) are

being manually installed.

Level 3: Coordinated – At the coordinated level, the following characteristics are apparent:

• People: Mainly siloed organization; however, lead architect/lead designer(s) increase their scope to also

include operational aspects. Joint sessions are held to increase wider visibility – for instance, key

operational staffs are actively engaged in the design and build phase. Developers are also measured on

operational characteristics.

• Process: Still mostly separate processes covering the entire solution lifecycle; however, there are some

joint process points where development and operational aspects are jointly covered. Better understanding

of the entire environment set-up and characteristics.

• Tools: Most of the development environment set-up is being created automatically. Only application-

related components are manually installed.

Level 4: Enhanced – At the enhanced level, the following characteristics are apparent:

• People: Joint teams that cover the entire solution lifecycle. Lead architect owns entire solution including

functional and non-functional covering design, build, test, and run.

• Process: Single overall process covering the entire solution lifecycle – from design, build, test to run.

Clear visibility of all projects/changes that are at different stages with a clear view on all compliance

levels (functional and non-functional). Clear view on the entire environment set-up and characteristics.

• Tools: Most of the development environments; set-up, testing, and live are being created automatically.

This now covers servers, operating system, operating system near, as well as most middleware and

application-related components.

Level 5: Top Level – At the top level, the following characteristics are apparent:

• People: One team, co-located and extensive collaboration and knowledge sharing.

• Process: Single overall process covering the entire solution lifecycle – from strategy, planning to design,

build, test to run.

• Tools: All environment set-ups are being created automatically from a single repository. This covers all

aspects – servers, operating system, operating system near, as well as all middleware and application-

related components. No manual processes in place.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 11

DevOps Implementation Model (DIM)

DevOps is hampered by a number of key aspects:

• The lack of a standard definition for DevOps has created confusion for Infrastructure and Operations

(I&O) leaders, trying to adopt this philosophy [Gartner 2014]

• There is no standardized or simplified approach regarding the adoption of DevOps by an enterprise I&O

leader, causing confusion about how and where to start [Gartner 2014]

• Each DevOps implementation is unique and every customer requires a customized approach

[Gartner 2014]

In practice, tools, methods, and technologies are seldom deployed on green-field sites and the key to

success is to:

• Define a clear target

• Establish a clear transformation plan

• Actively manage the plan execution

DevOps implementation should not merely be perceived as deploying a new tool like CodeStream or Docker.

It should be viewed from a wider perspective and should be planned and executed in an efficient manner.

Poorly planned DevOps implementations may result in significantly higher costs.

A DevOps implementation starts with creating a rationale business case, mapping a way for code migration

between environments (considering people, processes, and technology), and placing focus on the target.

Understanding the “as-is” scenario, mapping the “to-be” scenario, and estimating the benefits of moving to

the “to-be” are critical for success. A DevOps implementation should be backed by a strong business case.

Every environment does not benefit from full or partial DevOps deployment. For instance, environments with

little change requirements may not benefit from DevOps implementation at all.

DevOps aims to reduce the impact of changes, to reduce cost, and minimize impact to the live services. As

applicable to every change project, the decision to change culture or processes and to deploy the right tools

must be backed by a strong business case. Many businesses struggle to take the right decisions at this stage.

To estimate the benefits of DevOps implementation within their environment, they should analyze the

existing situation; the existing tools, processes, resources, and their skills.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 12

Business,

Developers, Testers,

Operations

The starting point

The programs of change (mainly business

and IT-focused) that are needed to move

the as-is to the to-be

Today

Business

I (IS/TI)

Users

Tomorrow

Business

I (IS/TI)

Users

Target

Business

I (IS/TI)

Users

Issues, Risks, Challenges, and Constraints

... using processes

to develop, test,

and train ...

... on applications

and middleware

running on

infrastructure

The elements that constrain the as-is to

move to the interim and the to-be

A view on the target

future state …

… across the

stakeholders …

... covering end-

to-end process

and ...

... technology

landscape

Overall Business Objectives, Sector-wide Drivers, External Drivers, IT Strategy

Figure 6: Transformation Over Time

Then, as the “snowflake” point in Gartner’s paper [Gartner 2014], each client context is different and

what works for one might not work for the next.

A strong business case for DevOps is the prime catalyst which should be thrown in for demonstration of the

true value across the stakeholder value chain. That being said, there are numerous factors to be considered

where costs are involved. Some of the major factors which impact costs are:

• The business processes-related changes and the changes in the way the information flows between

humans

• The inconsistencies across process and tools impacting the changes towards new standard operating

procedures

• The methods of automated environment provisioning through increased virtualization and cloud adoption

• A revamp of the change management process and the relevant systems which accounts for the ways in

which deployment and configuration move towards being more automated than manual

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 13

DevOps Implementation Approach (DIA)

DevOps implementations do vary from client to client as there is no single silver bullet. To ensure successful

adoptions, clients should execute the above activities. However, there are key enablers to consider when

starting a DevOps engagement. Applying the experience from previous DevOps engagements, there are eight

key aspects to consider:

Standardize Train Virtualize

Rationalize Optimize

Hardware, Software,

Procurement

Automate

Hardware, Software

2 3 4

5 6 7

1

Strategy &

Architecture

As-Is, To-Be, Plan

Business Case
People

Compute, Storage

and Network

Reduce

Complexity

Orchestrate

End-to-end

Management

8

Processes

Figure 7: DevOps Implementation Concerns

1. Strategy and Architecture: Understand where you are; covering business, applications, information,

and infrastructure. Know where you want to be and have a plan that drives real value.

2. Standardize: Focusing on hardware, hardware-near software (like operating system), as well as

middleware and try to standardize as much as possible and reduce overall product variances.

3. Train: Focus on your people; up-skill and train in basic but also advanced subjects covering

technology-specific, generic, and soft skills.

4. Virtualize: Not an absolute must; however, a great accelerator automating processes is abstracting

from underlying hardware covering not just compute but also storage and network.

5. Rationalize: Reducing overhead will allow for better focus as well as reduce complexity.

6. Optimize: Eradicate unnecessary steps in key processes, in particular when these are of manual or

semi-manual nature.

7. Automate: A key foundation block for DevOps – automate as much as possible. Moving in to a

continuous deployment cycle will be accelerated if processes are automated.

8. Orchestrate: Moving, starting, creating, and deleting services in an orchestrated fashion; for

instance, via a central capability, will increase the impact of DevOps.

To determine DevOps success it is necessary to be able to measure the impact across people, process, and

technology for a successful implementation.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 14

Bi-Modal IT

Bi-modal or “two-speed” IT is a recent Gartner hypothesis that IT capabilities can usefully be separated into

two modes: a slow, more deliberate mode for core systems and a faster, more Agile mode for systems

requiring greater agility. The advantage of the IT4IT Reference Architecture is that one architecture supports

various “speeds” of IT delivery.

Kanban

Kanban [Anderson 2010], [Burrows 2015] is a term for both a specific technique of visually managing work-

in-process, as well as a broader methodology promoted by David J. Andersen. The method calls for self-

organization, limited WIP, culture change, and other goals consistent with Lean and Agile approaches.

Scaled Agile Framework (SAFe)

SAFe [Leffingwell 2010], [SAFE 2015] is a more prescriptive framework that formalizes to some degree

concepts such as epic, story, backlog, release train, and so on. SAFe is perhaps unique among Agile schools

of thought in explicitly recognizing a role for architecture.

Agile and the IT4IT Framework

As the IT4IT framework is process and methodology-agnostic, DevOps can be mapped into the Reference

Architecture (Figure 8, Figure 9).

Design Develop Build Test Release RunPlan

• Portfolio

Planning

• Release

Planning

• Governance

• Architecture

• Service

Design Mgmt.

• Requirement

& Defect

Tracking

• Development

• Source Control

• Backlog Mgmt.

• Build &

Continuous

Integration

• Functional,

Performance,

Security,

Mobile, UAT

• Test Mgmt. &

Automation

• Pipeline

• Release Mgmt.

• Change Mgmt.

• Risk Mgmt.

• Fulfilment

• Monitoring

(test reuse)

• User & Log

Analytics

(reuse in dev.)

Value

Chain

Value

Stream

Functions

Strategy to

Portfolio
Requirement to Deploy

Request to

Fulfill

Detect to

Correct

Figure 8: DevOps Across the IT Value Streams

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 15

Service
Portfolio

Component

Portfolio
Demand

Component

Proposal
Component

Policy
Component

Defect
Component

Requirement
Component

Project
Component

Test
Component

Build
Component

Source
Control

Component

Change
Control

Component

Problem
Component

Incident
Component

Event
Component

Diagnostics &
Remediation
Component

Usage
Component

Chargeback/
Showback

Component

Strategy to

Portfolio
Requirement to Deploy Request to Fulfill Detect to Correct

Offer Mgmt.
Component

Offer Consumption Component

Service

Archi-

tecture

Policy
Require-

ment

Scope

Agree-

ment

IT

Initiative

Portfolio

Backlog

Item

Source

Conceptual

Service

Blueprint

Concep-

tual

Service

Logical

Service

Blueprint

Test

Case

Defect

Offer

Service

Release

Build

Service

Catalog

Entry

Desired

Service

Model

Usage

Record

Fulfill-

ment

Request

Sub-

scription

Charge-

back

Contract

Request

Problem/

Known

Error

Incident

Event

Service

Monitor

Run

Book

RFC

Service
Monitoring

Component

Catalog
Composition
Component

Shopping

Cart

Enterprise
Architecture
Component

Service
Design

Component

Fulfillment
Execution
Component

Request
Rationalization

Component

Configuration
Management

Component

Release
Composition
Component

Service Level
Component

Service

Contract

Actual

Service

CIs

Build

Package

Build
Package

Component

Service

Release

Blueprint

IT4IT Reference Architecture L1 V.2.0

Agile Overlay

Epics and

stories

Automated

testing

Sprint versus

project planning

Centrality of

source control

Automation as

design criteria

Automated

build process

Combine into

common backlog

Feedback to defect &

change; automated

rollback

Infrastructure

as code:

automated

deployment

Automated

topology

updates

Figure 9: Agile Concerns Across the IT4IT Reference Architecture

As we can see in Figure 9:

• Proliferation of queues

• Enterprise Architecture and portfolio backlog

• Automation as design criteria

• Requirements as defects as combined product backlog

• Automated build process

• Automated testing

• Infrastructure as code and automated deployment

• Event feedback to product backlog

• Automatic configuration updates

There may be questions from the Agile community about the role, purpose, and desirability of any

framework purporting to address some aspect of Agile. However, Lean and Agile authors, case studies, and

presentations provide a wealth of tangible objectives that can inform the development of a reference

architecture.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 16

The IT4IT standard is not a methodology. It is not primarily concerned with how work is done. This

distinguishes it from CMMI, ITIL, SAFe, SCRUM, etc. It is a framework and prescriptive in the sense of it

being a reference model. It is prescriptive in the same sense that design patterns are prescriptive – they

prescribe a solution, but still need to be applied correctly.

Frameworks can be implementation methods or reference models. The IT4IT standard is a reference model

and, as such, is similar to the patterns literature [Buschmann 1996], [Fowler 2003], [Fowler 1997], [Gamma

1995], [Hay 2006], [Larman 2002].

Without question, there are emergent consensus points within the Agile movement that can be stabilized into

a reference architecture. The central importance of source control is one example, and the IT4IT Reference

Architecture has been updated accordingly (the “Service Development” component was renamed the “Source

Control” component). The need to universally identify and manage queues [Reinertsen 2009] is another

overriding concern, and the basis of Kanban and Queueing (on page 54).

The IT4IT standard is primarily intended for large enterprise IT organizations. The intent is to enable loosely-

coupled, decentralized Agile teams by prescribing simple IT coordination interfaces supporting accepted

Agile implementation patterns, informed by documented Agile principles, providing end-to-end traceability

of IT services.

The IT4IT standard may become prescriptive in a tighter sense when applied to IT management tool

interoperability. However, the IT4IT standard is not prescribing particular tools, practices, or methods.

(Note: Agile/Lean has a strong emphasis on culture and organizational change management. Such concerns

are outside the purview of the IT4IT standard in general.)

Business Goals

It is by now well established that the IT Value Chain is best seen as a product development and management

process, as opposed to a truly repetitive production process [Reinertsen 2009]. As discussed in the previous

section, Reinertsen, Poppendieck, and others have developed a variety of well documented and empirically

proven principles that characterize the Agile/Lean approach for product development. These apply to

software development, product development, and business development at its most general.

Essential Agile requirements can be inferred from these classic questions from Mary and Tom Poppendieck:

• How long would it take your organization to deploy a change that involved just one single line of code?

• Do you deploy changes at this pace on a repeatable, reliable basis? [Poppendieck 2007, p.92]

The Kanban movement addresses these business goals by limiting work in process through simple and

effective shared visual models ([Anderson 2010], [Kniberg 2011], [Burrows 2015]) while the DevOps

movement seeks to satisfy these business goals by accelerating and making the end-to-end software pipeline

as automated as possible while bridging the cultural divide between Development and Operations ([Allspaw

2009], [Humble 2011], [Limoncelli 2014]).

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 17

Continuous Testing

Improve quality and minimize risk

Release Automation

Automate provisioning and deployment in data center and cloud

Continuous Release Cycle

Achieve end-to-end traceability and collaborate across the DevOps cycle

Continuous Feedback

Improve quality and performance by passing production snapshot,

and monitoring configuration back to dev/test

Provision

dev & test

Test

results

Deploy

test app

Instrument for

performance
Run test cases

& security scan





…………

…………

Staging

Monitor

Production

Figure 10: Importance of Feedback

Feedback is a critical objective in product development (e.g., software and systems development); as product

development is essentially the generation of information [Reinertsen 2009].

Examination of various Agile sources supports the following matrix of business objectives for the Agile

scenario:

(Note: There is one set of unified business goals for the Agile scenario as a whole, but each sub-scenario has

its own requirements.)

ID Goals Notes

G.0.1 Correctly apply economics [Reinertsen 2009]

G.0.1.1 Understand overall economic impact [Reinertsen 2009]; e.g., leveraging beneficial
variability and uncertainty

G.0.1.2 Understand cost of delay and value of
information

[Reinertsen 2009], [Hubbard 2010]

G.0.1.3 Understand metrics as economic proxy
variables

[Reinertsen 2009], [Hubbard 2010]

G.0.2 Avoid waste [Womack 2003]

G.0.2.1 Limit work-in-process [Kim 2013], [Goldratt 2004]

G.0.2.2 Reduce task switching or multi-tasking [Kim 2013]

G.0.2.3 Eliminate non-value-add process [Ohno 1988]

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 18

ID Goals Notes

G.0.2.4 Minimize manual work [Humble 2011]

G.0.2.5 Identify, make visible, and manage all work
queues

[Kim 2013]

G.0.2.6 Avoid the antipattern of “optimizing” for
utilization

[Goldratt 2004]

G.0.3 Maximize information [Reinertsen 2009]

G.0.3.1 Seek fast feedback [Reinertsen 2009]

G.0.3.2 Invest in options where possible (e.g., parallel
development to explore different product
directions simultaneously)

[Burrows 2015], [Scotland 2010]

G.0.3.3 Ensure information visibility across entire
pipeline

G.0.4 Manage for flow under uncertainty [Reinertsen 2009]

G.0.4.1 Manage batch size [Reinertsen 2009]

G.0.4.2 Synchronize complex activities [Reinertsen 2009]

G.0.4.3 Minimize variability in repetitive processes

G.0.4.4 Accept and manage variability in creative
processes

G.0.5 Build effective culture

G.0.5.1 Manage for end state and intent [Reinertsen 2009]

G.0.5.2 Encourage self-organization [Anderson 2010]

G.0.5.3 Tolerate failure; maximize information captured
and focus on problem-solving

[Limoncelli 2014]

G.0.5.4 Employ proven human motivators: autonomy,
recognition, collaboration, flow

G.0.5.5 Avoid demotivators: control, blame, non-value-
adding work

G.0.6 Build effective software pipeline

G.0.6.1 Continuously integrate and test source code
and system functionality at appropriate levels
(e.g., unit, integration, and system)

[Duvall 2007]

G.0.6.2 Maintain complex system functionality in an
“always shippable” state

[Allspaw 2009]

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 19

ID Goals Notes

G.0.6.3 Fully automate the repetitive aspects of code
development, build, testing, and deployment

G.0.6.4 Seek end-to-end integration of “development”
and “operations” tasks, resources,
communication, and culture

G.0.6.5 Build a product-centric mindset where the
overriding goal is software functioning correctly
in production

[Alliance 2001]

G.0.6.6 Limit variability by using consistent
configurations, toolsets, and resources in
building all environments across the pipeline

[Duvall 2007]

G.0.6.7 Roll back failed changes immediately with
robust and well tested, automated approaches

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 20

Portfolio and Product Backlog

Portfolio Backlog Scenario

Overview

Portfolio management is a common model for IT investment management [Kaplan 2005], [TSO 2011],

[Maizlish 2005]. Portfolios are logical, large-grained, investment categories containing products (IT services)

which are managed throughout the product (IT service) lifecycle.

The strategic plans and roadmaps for the business are managed at the portfolio level (portfolio backlog), and

detailed at the product (IT service) level within the portfolios. SAFe uses the term “epic” [SAFE 2015]. User

requirements, enhancements, open defects, improvement opportunities, and IT demand are tracked at the

product (IT service) level within a product backlog (alternatively termed program backlog) which exists

throughout the lifecycle of the product (IT service).

Management of portfolio backlogs (strategic demand/roadmaps) should be consistent across all portfolios.

Likewise, product (IT service) backlogs should be managed consistently across business units. In this way,

staff who support various portfolios and products use the same tools and processes, thereby reducing total

time/cost on projects since different project delivery staff could be assigned to any project/effort. Managing

consistently also enhances transparency.

As product stakeholders (e.g., “the business”) identify needs, they work with product delivery (e.g., “IT”) to

validate those business needs against the service portfolio to determine whether the needs could be met by

enhancing existing IT services, or if new IT services would be needed. The business works with IT to add the

business need (portfolio demand) as a portfolio backlog item for a particular business unit (portfolio).

Product owners and delivery teams collaborate to determine when funding is available to allow the initiation

of work (project). At that time they will approve work to be performed for one or more portfolio backlog

items. The portfolio backlog items will be linked to specific products (IT services) by linking to requirements

(product backlog items). Once the project funding is approved, work will begin to create or modify the

product (e.g., an IT service).

Requirements

ID Goals

PFBG.01 Utilize an integrated suite of tools and aligned processes for all efforts across the IT organization
regardless of approach (methodology) or customer (business unit) resulting in lower training costs
and increased flexibility in staffing initiatives.

PFBG.02 Manage and maintain authoritative repositories for key data elements within the IT organization.

PFBG.03 Visibility into planned, in-progress, and completed work across the IT organization.

PFBG.04 Roadmaps are derived from the portfolio backlog and should exist for every portfolio with a focus
on the current fiscal year, view into the last fiscal year, and view into the next fiscal year.

PFBG.05 A product backlog exists for each IT service throughout the life of that IT service.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 21

ID Goals

PFBG.06 The product backlog supports any software development methodology (i.e., Agile, waterfall, RUP).

PFBG.07 Product backlog contains all proposed changes to an IT service (i.e., user stories, enhancement
requests, defects).

PFBG.08 Project delivery begins after funding has been approved by the applicable governing group.

PFBG.09 Ability to capture business needs in the portfolio backlog as a portfolio backlog item:

 Portfolio

 Summary

 Description

 Status

 Priority

 Planned fiscal year

 Rough order of magnitude effort estimate

PFBG.10 Ability to link a portfolio backlog item to one or more conceptual services:

 Portfolio backlog item

 Conceptual service

PFBG.11 Ability to link a portfolio backlog item to one or more product backlog items:

 Portfolio backlog item

 Product backlog item (requirement)

PFBG.12 Ability to link an IT project to a portfolio backlog item(s):

 IT project (scope agreement)

 Portfolio backlog item

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 22

Process Flow

Scenario: Manage Portfolio Backlog

Discuss Business

Needs

Update Portfolio

Roadmap

Portfolio

Roadmap Item

Manage Demand

Validate against

Service Portfolio

IT Service

Manage Service

 Portfolio

Business

 wants to create

or enhance

capability

Manage Product Backlog Items

Product

Backlog Item

Map Roadmap

Items to Product

Backlog Items

Approve funding

to begin project/

effort

Scope

Agreement

Manage Proposals

PFBREQ.01: Process requirements record a business need in the portfolio backlog

The business identifies needs during annual planning and records those efforts in the roadmap (portfolio

backlog). Annually, a budget is agreed by the business and the roadmap is updated to reflect what work is

planned for the current fiscal year and what work will be moved to future fiscal years. Throughout the year,

additional needs may be identified, in which case the business works with IT to update the roadmap and

potentially defer existing planned work. The roadmap is kept in priority order as funding may be changed

throughout the year and additional work may be brought into a given year, or pushed to a future year.

In some Agile shops, annual planning may not occur and the portfolio backlog is updated as business

identifies needs. As work is planned, portfolio backlog items will be moved or linked to a program or team

backlog and worked by the Agile teams.

PFBREQ.02: Roadmap items are validated against IT services

As business needs are identified, IT will work with the business to understand if an existing service(s) could

be modified to meet the need, or if a new service(s) is needed to meet the need. As new services are

conceived, portfolio backlog items may be linked to the new services.

PFBREQ.03: Map portfolio backlog items to product backlog items

IT links portfolio backlog items to one or more product backlog items (user stories). This allows traceability

of product backlog items to the scope agreement when one or more portfolio backlog items are approved to

work.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 23

PFBREQ.04: Approve portfolio backlog item to be worked

The business reviews the roadmap (portfolio backlog) and approves funding for work to begin. The business

may delegate funding authority to the product team and trust that the product team is focused on delivering

business results.

The roadmap items are linked to one or more products (IT services) and the corresponding product backlog

items for those IT services. The business approves a project, which is linked to the appropriate portfolio and

product backlog items, to begin and with an initial budget.

Goal Explanation

G.01 Demand processes and management of the portfolio backlog are consistent across all
methodologies and portfolios.

G.02 Single repository for the portfolio backlog is management and maintained for all portfolios.

G.03
G.04

A portfolio backlog exists for the key business portfolios and shows past roadmap items, planned
roadmap items, and future roadmap items.

G.08 Projects can only start if there is agreement from the business (IT contract) for scope and cost.

Automation Specification Using the Reference Architecture

The portfolio backlog is composed of large-grained, thematic requirements (aka epics). Requirements come

from business strategy in the face of market conditions.

The reference architecture supports the system of record functional components for service portfolio,

portfolio demand, and proposal.

Essential Services Supporting the Scenario

Scenario: Manage Portfolio Backlog

Validate against

Service Portfolio

Manage Service

 Portfolio

Discuss Business

Needs

Update Portfolio

Roadmap

Manage Demand

Business

 wants to create

or enhance

capability

Map Roadmap

Items to Product

Backlog Items

Approve funding

to begin project/

effort

Manage Proposals

Portfolio Demand Component

Update Portfolio

Backlog Item

Create Portfolio

Backlog Item

Proposal Component

Create Scope

Agreement

Service Portfolio Component

Update Conceptual

Service

Create Conceptual

Service

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 24

The scenario calls for essential services that can:

1. Create/update a conceptual service

2. Create/update a portfolio backlog item

3. Create a scope agreement

Data Architecture

Scenario: Manage Portfolio Backlog

Validate against

Service Portfolio

IT Service

Manage Service

 Portfolio

Discuss Business

Needs

Update Portfolio

Roadmap

Portfolio

Roadmap Item

Manage Demand

Business

 wants to create

or enhance

capability

Manage Product Backlog

Product

Backlog Item

Map Roadmap

Items to Product

Backlog Items

Approve funding

to begin project/

effort

Scope

Agreement

Manage Proposals

Service Portfolio Component

Conceptual

Service

Portfolio Demand

Component

Portfolio

Backlog Item

Product

Backlog Item

Requirement Component

Requirement

Proposal Component

Scope

Agreement

The major entities include:

1. Conceptual service

2. Portfolio Backlog Item

3. Requirement

4. Product Backlog Item

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 25

5. Scope Agreement

See Kanban and Queueing (on page 54) for a discussion of how requirements and backlog items might be

consolidated with a common queuing interface.

Detailed Explanation of Reference Architecture Usage

Service Portfolio Component

Conceptual

Service

Portfolio Demand Component

Portfolio

Backlog Item

Requirement Component

Requirement

Manage Proposals

Proposal Component

Scope

Agreement

Update

Requirement

Create

Requirement

Create Scope

Agreement

Update Conceptual

Service
Create Conceptual

Service

Manage Service

 Portfolio

Manage Product

Backlog Items

Manage Demand

Product

Backlog Item

1. The Manage Service Portfolio process creates/updates the Conceptual Service.

2. The Manage Demand process creates/updates portfolio backlog items (e.g., epics) (diagram shows

that Manage Demand is also invoking Create Requirement?).

3. The Manage Product Backlog process creates requirements (e.g., user stories).

Key Attributes Required by this Scenario

Artifact Attributes Additional Information

Conceptual Service ID Unique ID of conceptual service.

Name This is the name easily identifying the service.

Description This would represent the short description of a service.

Portfolio Backlog
Item

ID Unique ID of portfolio backlog item.

Portfolio This would be the portfolio name to which the backlog item
is related.

Summary This would represent the short description/title/summary of
a given portfolio backlog item.

Description This would be the full description; ideally supports rich text.

Backlog Priority This priority is unique across all backlog items for a single
portfolio.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 26

Artifact Attributes Additional Information

Backlog Status This status shows the state of the backlog item. Status
would be used by both the business and IT to determine
whether it was an agreed roadmap item, proposed, in
progress, etc.

Proposed Budget This would be requirement, defect, or known error.

Fiscal Year This would indicate in which fiscal year the roadmap item
(portfolio backlog item) is planned.

IT Service ID/Name This needs to be at least the IT service name, but ideally it
would be the IT service ID and service name.

Requirement ID(s) This would be used to link a portfolio backlog item to one or
more product backlog items (requirements).

Scope Agreement ID This would be used to link a portfolio backlog item to a
scope agreement.

Requirement ID Unique ID of requirement.

IT Service ID/Name This needs to be at least the IT service name, but ideally it
would be the IT service ID from CMDB and the IT service
name.

Summary This would represent the short description/title/summary of
a given requirement.

Description This would be the full description; ideally supports rich text.

Portfolio Backlog ID This would be used to link a product backlog item to a
portfolio backlog item.

Scope Agreement ID Unique ID of a scope agreement.

Portfolio Backlog ID This would be used to link a scope agreement to a portfolio
backlog item.

IT Service ID/Name This needs to be at least the IT service name, but ideally it
would be the IT service ID and the IT service name.

Summary This would represent the short description/title/summary of
a given scope agreement.

Description This would be the full description; ideally supports rich text.

Product Backlog Scenario

Overview

As made clear in the previous section, investments are divided into portfolios, which may have backlogs.

This level is equivalent to the concept of “epics” within SAFe. Once product investments are authorized

within a portfolio, each product has its own smaller-grained backlog, consisting of stories, defects, and so on.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 27

New product backlog items can come from multiple sources, but should all be captured in a single repository

for an individual IT service. The business may ask for enhancements to existing products, IT may identify

known errors or operational issues that need to be remedied; there may be other defects in the products which

need to be resolved.

Requirements

ID Requirements

REQ.05 Ability to capture new enhancement requests or updates to existing enhancement requests in the
product backlog:

 IT Service

 Summary

 Description

 Status

 Priority

REQ.06 Ability to add/modify unfulfilled requirements on the product backlog for an IT service:

 IT Service

 Summary

 Description

REQ.07 Ability to add/modify open project defects which are not resolved prior to going live on the product
backlog for an IT service:

 IT Service

 Summary

 Description

REQ.08 Ability to add/modify known errors to the product backlog for an IT service:

 IT Service

 Summary

 Description

Process Flow

Scenario: Manage Product Backlog

Push Known

Errors to Product

Backlog

Manage Known Errors

Push Open

Defects to

Product Backlog

Manage Defects

Record User

Requirements

Requirement Product

Backlog Item

Review Items in

Product Backlog

Prioritize Items in

Product Backlog

Manage Product Backlog

User requests

product change

Defect Known Error

REQ.05: Process requirements; log IT request

Qualified product stakeholders may ask for a product to be enhanced. These requests need to be tracked in

the product backlog which should exist for the entire lifecycle of the product.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 28

The system should be able to track key information about the request such as the summary and description,

status, and priority. The status should reflect information about the request such as if it is new, approved,

rejected, or in-process. The priority of the request should indicate impact to the organization and reflect an

order of importance with respect to other items in the product backlog. The product backlog should be able to

be mapped to portfolio backlog items which are used to obtain approval by the business to fund an effort.

Many companies have a standing portfolio backlog item representing a pre-approved fund to enhance a

product based on the product owner’s discretion as delegated by the business.

REQ.06: Record open requirements in product backlog

There are times where requirements which were in scope for the project are unable to be met during the

course of a project. In these cases, those requirements should remain in an open status in the system so they

can be grouped into a future release of the IT service. The project or delivery team is responsible for making

sure the unfulfilled requirements are reflected in the product backlog.

REQ 07: Record open defect in product backlog

There are times where a project defect is not so severe as to prevent the release of an IT service. In these

cases, the defect still needs to be resolved in a future release and should be added to the product backlog so it

can be implemented in the future. The project or delivery team is responsible for making sure the open

defects are captured in the product backlog.

REQ 08: Record open known error in product backlog

When a problem is identified with an IT service, and the root cause is determined highlighting the need for a

change to the IT service, that known error should be reflected in the product backlog so it can be

implemented in the future. The problem manager is responsible for capturing known errors in the product

backlog.

Goal Explanation

G.01
G.05

A product backlog should exist for an IT service throughout the service lifecycle. Since requests
can come from many different sources such as the business and IT (projects and operations), it is
important to have a single list (product backlog) of all potential changes to the IT service so the
changes can be planned comprehensively. This promotes including operational changes and
business changes in releases of an IT service which ultimately reduces the cost and effort as
multiple items can be resolved with one project or initiative, thus preventing the ramp-up and
deployment costs associated with multiple projects or initiatives to do the same.

G.02
G.06

Many different software development methodologies may be used to create or enhance an IT
service. Since we share resources among our delivery teams, and since different resources may
work on various changes to various IT services, it is critical that some key information is stored in
a similar fashion without regard to which methodology may be used on a given project/effort. By
storing the data in the same repository and IT service, it then becomes a delivery team
determination on how best to meet the needs of a given project/initiative. There is also no time
lost between modifying data to fit one methodology or another.

G.02
G.07

By adding end-user change requests, open items from the project delivery process, and open
items from operational processes into a single repository, it allows the delivery team to go to a
single centralized repository to see the details (or links to details) of all in-scope items, thus
reducing time to otherwise review and consolidate various repositories.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 29

Automation Specification Using the Reference Architecture

The product backlog is a subset of requirements which are prioritized, associated with releases, and track

status. Requirements come from business demand, defects, and known errors.

The reference architecture supports the system of record functional components for requirement, defect, and

problem which ultimately are the source of the individual items comprising the product backlog.

The Requirement functional component becomes a key integration point between the Strategy to Portfolio

and Requirement to Deploy value streams.

Essential Services Supporting the Scenario

The scenario calls for essential services that can:

• Create/update a conceptual service

• Create/update a portfolio backlog item

• Create a scope agreement

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 30

Data Architecture

The major entities include:

1. Requirement

2. Portfolio Backlog Item

3. Defect

4. Known Error

See Kanban and Queueing (on page 54) for a discussion of how requirements, defects, and known errors

might be consolidated with a common queuing interface.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 31

Detailed Explanation on Reference Architecture Usage

1. The Manage Service Portfolio process creates/updates the Conceptual Service.

2. The Manage Demand process creates/updates portfolio backlog items (e.g., epics) (diagram shows

that Manage Demand is also invoking Create Requirement?).

3. The Manage Product Backlog process creates requirements (e.g., user stories).

Key Attributes Required by this Scenario

Artifact Attributes Additional Information

Requirement ID Unique ID of requirement.

IT Service ID/Name This needs to be at least the IT service name, but ideally it
would be the IT service ID and the IT service name.

Summary This would represent the short description/title/summary of
a given requirement.

Description This would be the full description; ideally supports rich text.

Portfolio Backlog ID This would be used to link a product backlog item to a
portfolio backlog item.

Defect ID Unique ID of a scope agreement.

IT Service ID/Name This needs to be at least the IT service name, but ideally it
would be the IT service ID and the IT service name.

Summary This would represent the short description/title/summary of
a given defect.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 32

Artifact Attributes Additional Information

Description This would be the full description, ideally supports rich text.

Known Error ID Unique ID of a known error.

IT Service ID/Name This needs to be at least the IT service name, but ideally it
would be the IT service ID and the IT service name.

Summary This would represent the short description/title/summary of
the known error.

Description This would be the full description, ideally supports rich text.

Proposed Changes to the IT4IT Reference Architecture for the Portfolio and Product

Backlog Scenario

ID Proposed Change Status

1 Add new attributes to portfolio backlog item within the Portfolio Demand
component as follows:

 ID

 Portfolio

 Summary

 Description

 Backlog Status

 Backlog Priority

 Proposed Budget

 Fiscal Year

 IT Service ID/Name

 Requirement ID

 Scope Agreement ID

Proposed

2 Add new attributes to conceptual service within the Service Portfolio
component as follows:

 ID

 Name

 Description

Proposed

3 Add new attributes to requirement within the Requirement component as
follows:

 ID

 IT Service ID/Name

 Summary

 Description

 Backlog Status

 Backlog Priority

 Portfolio Backlog ID

Proposed

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 33

ID Proposed Change Status

4 Add new attributes to defect within the Defect functional component as follows:

 ID

 IT Service ID/Name

 Summary

 Description

Proposed

5 Add new attributes to known error in the Problem functional component as
follows:

 ID

 IT Service ID/Name

 Summary

 Description

Proposed

6 Add new attributes to scope agreement in the Proposal component as follows:

 ID

 Portfolio Backlog Item ID

 IT Service ID/Name

 Summary

 Description

Proposed

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 34

DevOps and Automation

DevOps and the IT4IT Reference Architecture

DevOps is a notable trend in IT management. It is grounded in Lean and Agile theory, and enabled by

advances in IT computing power and software and systems design.

DevOps calls for a new mental model of change. Often, change and stability are seen as diametrically

opposed. However, this can often result in deferring change, which results in larger accumulated “batches” of

change. Complex systems do not respond well to such large perturbations. It is more effective to change them

continually over time in small, controlled increments. This results in the paradoxical finding that more

frequent change is better for stability. This can be counterintuitive for many IT professionals.

There is a great deal of material available on DevOps, some of it discussed in this document. For further

information on DevOps see the cited references, especially Continuous Delivery by Humble and Farley

[Humble 2011].

Goals

Goal Explanation

DG.1 High automation of the code pipeline – build, test, migrate, release.

DG.1.2 Entire pipeline from “Dev” to “Ops” is viewed as an integrated system.

DG.2 Continuous integration.

DG.2.1 Eliminate/minimize “branching” from the “mainline” of source.

DG.2.2 Daily/ hourly code check-ins across all teams.

DG.2.3 Automated software testing.

DG.3 Develop against production-like environment.

DG.3.1 Common build approaches used for all environments.

DG.3.2 Focus on configuration management.

DG.4 Architect for resiliency.

DG.4.1 Focus on Mean Time to Recovery (MTTR), not Mean Time Between Failures (MTBF)

DG.5 “Infrastructure as code”.

DG.5.1 Configurations are scripted assets in source repositories, part of build.

DG.5.2 Automation enables rapid provisioning and deployment.

DG.5.3 Automated rollback, where possible.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 35

The following matrix mapping People, Process and Technology to the IT4IT Value Streams is intended to

illuminate how DevOps and the IT4IT standard interact.

 S2P Value Stream R2D Value Stream R2F Value Stream D2C Value Stream

People Establish common
values and
awareness

Culture of systems
engineering and
collaboration

Ops cross-pollination Training to develop
and support maximum
automation

Dev on support
frontline

Process Matrix organization
and service-aligned
virtual teams
supported by shared
services engineering

All queues identified

Delivery and
deployment cadence

Reduced WIP

Services designed for
automation and self-
service through catalog
and APIs

Problem management
feedback to R2D

Technology Lifecycle
Management &
Automation

Planning, reporting

Metrics management
(KPIs, MTBF, MTTR)

Automate build, test,
deployment

Infrastructure
virtualization and
provisioning
automation

Automate monitoring,
workload management

Analytics

DevOps Reference implementation

An initial reference implementation of the DevOps scenario was undertaken using free and open source

software [Betz 2015]. Products employed included:

Product Role

Ubuntu Linux Operating system

Vagrant Virtual environment

Chef Zero Virtual server provisioning

Java Programming language & interpreter

Junit Automated testing framework

Apache Ant Language-specific build tool

Apache Tomcat Application server

Git Source control repository

Jenkins Build choreography tool

Artifactory Package repository

https://wiki.opengroup.org/councils-wiki/doku.php?id=forums:it4it:agile:03-devops#betz2015

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 36

Purpose

One of the purposes of this effort was to ensure that the DevOps scenario was well grounded in technical

fundamentals. Abstractions (e.g., “source code control”) need to have concrete examples, and interactions

suggested by graphical lines need to be traceable to actual system relationships.

The initial version of the pipeline explored the relationship between development, testing, and production

environments. Various learnings are presented here in support of the architecture approach in the following

sections.

Learnings

There were a number of learnings and insights generated by this effort:

• The importance of representing subject systems and environments in the IT4IT pipeline (e.g., “developer

workstation,” “production server”)

• Clarifying the relationship between artifact and data object

• Maven coordinates and semantic versioning (see Maven Coordinates and Semantic Versioning, below) as

emergent metadata standards

• Relationship between source and package repository

• Role of testing practices versus test management systems

Systems and Environments

The IT4IT Reference Architecture has not formally represented the computing systems producing and being

produced as a result of the IT Value Chain. However, in attempting to produce a well grounded DevOps

reference architecture, it is helpful to represent concepts such as a “development environment”, “build

environment”, and “production environment”. These are intended abstractly. Particular technologies were

chosen for the reference implementation (e.g., Java and Tomcat) but alternatives could also be used (e.g.,

Javascript and node.js).

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 37

arch Dev Wks

Containing node

Source Control

Component

Virtual node

Development Platform (java)

*.jav a

*.class

*.jar

Local source control (git)

Local build (ant)

Local test (jUnit)

Local execution

environment (Tomcat)

*.xml

«flow»

«flow»

Figure 11: Example Development Environment

With the increasing power of infrastructure and reach of cloud, there are many variations on how

development environments are constructed. A local physical PC used by a developer may employ a

hypervisor (VirtualBox or boot2docker) with development and execution carried out in a virtual layer. The

virtual layer increasing is built consistently with production environments through infrastructure as code

(e.g., Chef recipes) under shared source control.

Others may still run an execution environment such as Tomcat directly on the base OS, without an

intervening virtual layer; however, this approach seems to be falling out of favor.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 38

technology pipeline

Development

Environment
Build Environment Staging

Environment

Production

Environment

Build Management

Component

Source Control

Component

Package Control

Component

Fulfi l lment Engine

and

Deploy/Provision

Component

IT artifact

migration

represented by

flows

Instantiated

by build

mgmt

Deployment managed

distinctly from build

choreography

External product

Components built by

other teams or 3rd

parties

«flow»

«flow» «flow»

«flow»

«flow» «flow»«flow»

Figure 12: Development Pipeline

In Figure 12, artifacts flow through the pipline (green nodes) through the pipeline control infrastructure (blue

components). Additionally, the following interactions are not shown on the diagram:

• The Source Control component may hold infrastructure definitions for the environments.

• The Fulfilment Engine may instantiate and provision the base environments as well as installing

packaged artifacts on them.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 39

Artifact and Data Object

As of early 2015, the IT4IT standard is moving towards replacing the term “artifact” with the term “data

object”. The insight from this reference implementation is that both terms are in fact needed. (This is also

consistent with the ArchiMate® standard,2 which views “artifact” as a Technology Layer construct, while

Data Object and its analog Business Object are constructs of the Application and Business Layers,

respectively.)

The concept of an “artifact” is represented in the Calavera simulation by the following files:

• *.java

• *.class

• *.jar

• *.xml

While such artifacts may follow well-defined syntax, they are arbitrarily complex. Therefore, a metadata

layer emerges to manage them. Metadata is built from concise textual fragments, made consistent and

suitable for structured data management at scale. Examples include:

• File name and extension

• File location

• Commit identifier (from version control system)

• Author/developer

• Build # and date

• Version (see Maven Coordinates and Semantic Versioning, below)

• Associated project or release

These attributes are “meta” in the sense that they are not directly required for the runtime functioning of the

system, but rather assist in human understanding of its characteristics. Such basic attributes, when

aggregated and normalized into schemas, are the foundation of structured IT management and therefore the

IT4IT standard.

Many other examples exist, and specific artifacts may have extensive metadata (especially those artifacts

having to do with structured data management; e.g., data models and data definition schemas).

2 ArchiMate® 2.1 Specification, Open Group Standard (C13L), December 2013, published by The Open Group; refer to:
www.opengroup.org/bookstore/catalog/c13l.htm.

http://www.opengroup.org/bookstore/catalog/c13l.htm

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 40

application Scenario 1

Source

Artifact
Packaged

Artifact

Service ID & Version BuildTest Case Defect

«trace»

«trace»

«trace»«trace»

Figure 13: Relationship of IT4IT Data to Artifacts

Figure 13 graphically shows the relationship between artifacts and their metadata (aka IT4IT data).

Maintaining the traceability between artifact and data object is a critical requirement across the IT4IT

Reference Architecture. The originating point for this critical metadata is often the application manifest,

although there is no industry standard. Build tools are also important, as they retain the record of when and

how a given release package was constructed.

Maven Coordinates and Semantic Versioning

Two important developments in metadata are Maven coordinates and semantic versioning.3

Maven coordinates consist of the following:

• groupID; e.g., org.apache.maven

• artifactID; e.g., a project or application identifier (not a filename)

• version

• packaging

A fifth attribute, “classifier,” is sometimes used.

Semantic versioning can be used as the basis for the version ID; according to semver.org, it consists of the

following rules:

Given a version number MAJOR.MINOR.PATCH, increment the:

• MAJOR version when you make incompatible API changes

• MINOR version when you add functionality in a backwards-compatible manner

3 More information about Maven is available here: https://maven.apache.org. Maven coordinates are documented here:
https://maven.apache.org/pom.html.

https://maven.apache.org/
https://maven.apache.org/pom.html

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 41

• PATCH version when you make backwards-compatible bug fixes

12 Factor Principles

12-factor architecture principles4 also provide insight into the conceptual data structures used by DevOps

[Wiggins 2015]. The combination of these influences can be represented as a conceptual metamodel:

business 12FactorMetamodel

Product
In the Potentially

Shippable Increment

sense, not the Release

Train sense.

Deploy

Resource

ServiceNode

MachineVMContainer

Release

Env

Application or Service in

the ITSM sense

A collaboration of

specialized, deployed

Products (e.g. git,

Jenkins, Artifactory)

Service in the

microservice sense. "a

single application as a

suite of small services"

per Fowler.

Pipelines are few, but not

necessarily unique. They

are not infinitely scalable.

Pipeline

Commit Build

Figure 14: DevOps/12Factor Metamodel

4 See http://12factor.net/.

http://12factor.net/

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 42

The combination of basic file metadata, commit/build/release metadata, Maven coordinates, and semantic

versioning provides a foundation for IT4IT metadata. Most major IT management constructs can be

understood as derivative and/or dependent:

• Service and application IDs

• Release and change IDs

• Work tickets of various types: requirements, scenarios, stories, issues, risks, action items, incidents,

service requests

Source and Package Repositories

The reference implementation clarified the relationship between source and package repositories. In years

past, it has been common practice for compiled binaries to be stored in the same repositories as source code.

However, this is no longer deemed best practice. Source repositories should be reserved for symbolic artifacts

that can be meaningfully versioned, with differences represented in a human-understandable way. Package

repositories in contrast are for binary artifacts that can be deployed.

Package repositories have a further additional role as proxy to the external world of downloadable software.

For example, developers are directed to download the approved Java version from the local package

repository, rather than going to the Oracle or OpenJDK site and getting the latest version, which may not be

suitable for the environment.

Package repositories are also used (as indicated in Figure 12) to enable collaboration between teams working

on larger applications. Teams check built components into the package repository for other teams to

download, rather than everyone always building all parts of the application from source.

In these uses, package repositories serve as an important control point in reducing variability in the IT

pipeline; reducing such variability is one of the overall goals (G0.6.6) for the Agile work stream.

Testing Practices versus Test Management Systems

Finally, the IT4IT Reference Architecture presumes a test management system, but it is important to

distinguish between tests that are written and executed internally to the application versus tests that are

external.

For example, a suite of tests based on JUnit does not require an external “test management system” to run.

JUnit is incorporated into the development and build environments as a library include. Tests are written as

Java source code in a particular manner to be interpreted by JUnit.

On the other hand, an external “black box” testing capability can be seen as its own functional component or

system. Examples would include Apache Jmeter, SOASTA, or Stormrunner (aka Loadrunner).

Yet other testing products can be run as either a locally included capability, or an external service. Examples

include Selenium.

Finally, some Agile testing philosophies (test-driven design, behavior-driven design) start to converge test

definition with functional requirements. In this sense, the Test Management component overlaps with the

Requirements Management component.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 43

Future Directions for Simulation

The following features were deferred to future versions:

• Source code QA (e.g., static analysis)

• Code review collaboration enablement

• Test-driven infrastructure as code

• Defect and issue tracking

• Integration testing

• Monitoring and automated rollback

• Full ITSM suite integration

Continuous Deployment Scenario

Overview

In the previous section, scenarios were discussed that had been proven using a reference implementation.

This section takes a broader view of some of the use-cases described in current industry practice and

represents them in terms of the IT4IT Reference Architecture; a full reference implementation is pending.

The core continuous deployment scenario is described thus:

Develop and deploy software functionality from development to operations in a maximally automated model,

with sustainable velocity and demonstrating effective feedback.

Eric Minick (formerly of UrbanCode, now of IBM) suggests a set of overlapping, cumulative DevOps use-

cases [Minick 2012] including:

• Build software

• Deploy software

• System testing on deployment

• Continuous delivery with monitoring and rollback

We will adopt this set to start as our process requirements.

Note that this set does not include infrastructure as code.

It is essential in reading these scenarios to understand that they are intended to be run frequently and

iteratively. Without this, the core Agile goals of fast feedback and maximizing information are not realized.

Process Requirements

CD.REQ.01: Build software.

In this scenario software is constructed, tested, incorporated into a mainline trunk, and built into releasable

packages on an ongoing basis. This is the basic Continuous Integration use-case.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 44

CD.REQ.02: Deploy software.

In this scenario software is pulled from the package repository and applied to target environments in a

repeatable fashion.

CD.REQ.03: System testing on deployment.

In this scenario system-level tests are applied to the deployed packages.

CD.REQ.04: Continuous delivery with monitoring and rollback.

This scenario applies monitoring, event management, and automated rollback to the previous.

As an ITSM Flow

This is a view of the end-to-end flow, interpreted in terms of well-known ITSM processes.

analysis Dev Ops - ITSM scenario

SCENARIO - Core DevOps

Requirements

Management

Service Development (ITSM) Service Validation

and Testing

(ITSM) Release and

deployment management

This can be

implemented by

Kanban, but Kanban is a

mechanism that may be

used for other forms of

demand.

(ITSM) Change

Management

(ITSM) Change evaluation

(ITSM) Event Management

(ITSM) Incident

Management

(ITSM) Problem

Management

Rollback

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 45

Automation Specification

A variety of sources [Edwards 2012], [Minick 2012], [Thompson 2014], [Shortland 2012], [Betz 2011]

suggest some common architectural elements, named here as encountered and mapped to the suggested IT4IT

component:

DevOps Component Example Recommended IT4IT Mapping

Source Repository
Software Configuration Management

Git, Mercurial Source Control Component

Software Configuration Management ”“ ”“

Continuous Integration and Build
Management

Jenkins, Travis, Bamboo Build Component

Test Management Cucumber, RSpec, JUnit Test Component, except in the case
of embedded testing (e.g., JUnit)

Package Repository Nexus, Artifactory Package Component (new)

Infrastructure Manager Chef, Puppet Fulfillment Execution Component

Deployment Engine ”“ ”“

Deployment Console ”“ ”“

Configuration Management Database BMC Atrium Configuration Management
Component

Event Management Netcool Service Monitoring & Event
Components

Element Management Combination of Fulfillment Execution,
Service Monitoring, and Event
Components

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 46

application Scenario 1

Build Management ComponentSource Control Component Package Control Component

Test Management Component

Track tests

Execute tests

Static Analysis

Built artifact storage &

retrieval

Build package

Dependency Management

Source artifact reconciliation

Source artifact storage & retrieval

Stores package

Defect Management Component

Prioritization

Tracking

Source

Artifact
Packaged

Artifact

Service ID & Version Build

Test Case Defect

Data layer

Package

Test cases may also be

source artifacts

Code check-in
Primary choreography

engine for build, test &

package

«trace»

«trace»

«trace» «trace»

Figure 15: Build Scenario

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 47

Reading the diagram from left to right:

1. First, code is checked into the Source Control component. (This has been renamed from Service

Development Component, Q1 2015.)

2. This triggers workflow to start the new build. This may be done immediately, or on a batch basis

(i.e., the nightly build).

3. The Build Management component, performing Continuous Integration, may run tests (invoking

the Test Management component), including functional tests as well as external static analysis if

called for. Test execution may result in defects being logged. However, builds that fail because

embedded unit tests fail may not result in defects. They may simply be “failed builds” and

investigated and remediated on that basis. See note in previous section on testing practices versus

testing systems.

4. If the build succeeds, the built package is stored in the Package Control component (added to

IT4IT Reference Architecture early 2015).

Data Layer

As covered in the simulation discussion, the concepts of artifact and data object must be kept distinct, with

traceability between the two. The Source Control component must associate the source code with the service

ID and version, and the build process develops further information including tests applied, build metrics, and

any defects detected.

The package record is distinct from the actual packaged artifact, consisting again of metadata such as

publication status, date, URL, traceability back to the build record, and so on.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 48

application Scenario 2

Fulfi l lment Execution Component

Package Control Component

Built artifact storage &

retrieval

Fulfi l lment Engine and

Deploy/Provision Component

Install/configure

Report drift

Report configuration

CMDB

Component
Change Control Component

Prioritization

Tracking

Risk Management

Updated

dependencies

Initiate Deployment

Approves and

controls

Target Environment

Request for Change

Package

Service

Deployment Target

Service release

Fulfi l lment Request

Data layer

Packaged

Artifact

«flow»

«flow»

Figure 16: Deployment to Target

1. First, some event (automated; e.g., from a successful build, or human initiated) has initiated the

deployment process.

2. A proposed change has been submitted to and approved by the Change Control component (this

may be a standard change and approved in an automated manner).

3. The actual artifacts/package are pulled from the Release Composition component into the

deployment management system(s) and applied to the target system.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 49

4. Monitoring is established or updated.

5. The CMDB component is updated as required with any new dependencies or other information

originating from the package manifest.

Data Layer

The service may be decomposed into service release and package. The RFC minimally must be associated

with the service and optionally the release and/or package. Fulfillment Request represents work tracking

additional to/driven by the RFC. The target must be specified and upon successful deployment the CMDB

must be updated with the service/target dependency and any other new items or dependencies as appropriate.

application Scenario 3

Fulfi l lment Execution Component

Fulfi l lment Engine and

Deploy/Provision Component

Install/configure

Report drift

Report configuration

Test Management Component

Track tests

Execute tests

Defect Management Component

Prioritization

Tracking

Target Environment

Deploy

Test Case DefectFulfi l lment Request
Data layer

«flow» «flow»

Figure 17: Test on Deploy

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 50

6. Per the last scenario, some event has resulted in the deployment of software to a target system.

7. The Test Management component executes system-level, integration, and/or performance tests

against the target system (which may be any environment).

8. Results (as in the first scenario) are recorded in the Defect Management component.

The reader may note that Incident Management is not included in this scenario; it is in the next one.

Data Layer

The Fulfillment Request (deriving from the Request for Change) drives the application of one or more test

case(s). These would be typically systems or integration tests, such as performance testing suites. Issues

resulting from the test cases would be registered in the defect system.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 51

application Scenario 4

Fulfi l lment Execution Component

Fulfi l lment Engine and

Deploy/Provision Component

Change Control ComponentIncident Management

Component
Event Management

Component

Aggregation

Business rule

management

Prioritization

Tracking

Platform Specific

Svcs

Service Monitoring

Component

CMDB Component

CMDB updated

Dependency graph

Approves
Executes

Rollback

requested

Target Environment

Request for ChangeService

Deployment TargetEvent

Incident Fulfi l lment Request

Packaged

Artifact

Removed/reverted as

appropriate

Data layer

Alert

«flow»

Event

«flow»

Figure 18: Automated Incident Detection and Rollback

1. The software is now deployed into an environment with some level of operational monitoring,

starting at the lowest service monitoring level; e.g., probes and log monitors that detect the basic

operational status of the managed element.

2. The Service Monitoring component then raises events into an Event Management component

(sometimes called a manager of managers).

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 52

3. The Event Management component draws upon CMDB dependencies and its own business rules to

determine whether an actual Incident should be declared.

4. The Incident is declared and, if severe enough, may warrant rollback of the change (via a new

Change Request).

5. The proposed rollback of the Change is approved via the Change Control component.

6. The Deployment Management system then reverses the change (e.g., through pulling the previous

build and re-deploying it).

7. (Not shown) Causal analysis and remediation then are presumed to occur.

Data Layer

One or more Events are recognized against a known pattern resulting in the registration of an Incident against

the Service. If rollback is decided, a new Change (RFC) is created (and usually expedited). This then creates

a work order in the fulfillment engine, resulting in the removal/reversion of the installed package.

Notes:

• There are various patterns for the roles that element monitors, event managers, and incident systems play,

but a three-tier pattern is often seen.

• The term Service Monitoring component is a bit of a misnomer, as true service-awareness is not

understood at the element or system level, but rather require the dependencies from the CMDB.

Data Architecture

Data Object Attributes Additional Information

Build Build ID Unique identifier for a Build

Deployment Target
(Configuration Item)

CI ID Configuration Item unique identifier,
representing a CI that is a valid deployment
target

Defect Defect ID Unique identifier for a Defect

Event Event ID Unique identifier for an Event

Fulfillment Request Fulfillment Request ID Unique identifier for a Fulfillment Request

Incident Incident ID Unique identifier for an Incident

”“ Incident severity Relative priority/impact of Incident (perhaps
derived from service management); used to
determine if rollback is called for

Package Package ID Unique identifier for a Package

Release Release ID Unique identifier for a Release

Request for Change Change ID Unique identifier for an RFC

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 53

Data Object Attributes Additional Information

Product/Service Product/Service ID Unique identifier for a Product/Service

”“ Product/Service Version Identifies the version of a service

Test Case Test Case ID Unique identifier for a Test Case

Proposed Changes to the Reference Architecture for the DevOps Scenario

Two changes have been proposed by the Agile work stream and accepted:

• The creation of a Package component

• The renaming of the Service Development component to Source Control component

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 54

Kanban and Queueing

Kanban Scenario

Overview

A critical concern for Agile product development is identifying where queues are prescribed, and therefore

where work-in-process may accumulate and where demand is expressed for the end user. As Don Reinertsen

notes [Reinertsen 2009]:

“Queues matter because they are economically important, they are poorly managed, and they have the

potential to be much better managed. Queues profoundly affect the economics of product development (IT

services are a form of product). They cause valuable work products to sit idle, waiting to access busy

resources. This idle time increases inventory, which is the root cause of many other economic problems.

Queues hurt cycle time, quality, and efficiency. Despite their economic importance, queues are not managed

in today's development processes. Few product developers are aware of the causal links between high

capacity utilization, queues, and poor economic performance. Instead, developers assume that their cycle

times will be faster when resources are fully utilized. In reality, high levels of capacity utilization are actually

a primary cause of long cycle time.

Manufacturing companies use operations theory to identify bottlenecks and eliminate them – they have

identified the value chain is only as good as the weakest link (or weakest capacity). Little’s Law and

associated rules can be adopted for modeling the service value chain and eliminate both bottlenecks and

waste.”

It is a very interesting question, but beyond the scope of this document, as to how queues emerge in a

cooperative environment. There is some indication that queues proliferate as environments become more

specialized. At a certain point, this seems to become dysfunctional. See [Leffingwell 2010], [Larman 2009],

and [Reinertsen 2009].

The Kanban movement is responding to this by essentially centralizing heterogeneous demand into

simplified, common queuing mechanisms. A given team’s Kanban board may encompass Requirements,

Changes, Service Requests, Work Orders, and even Incidents and Problems – anything that results in

someone spending some time on it. Which of these the Kanban board includes depends on the context and

function(s) of the team in question.

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 55

Incident

SR

Work Order

Issue

Change
Release

TO DO DOING DONE

Figure 19: Heterogeneous Kanban Board

This industry direction, while clear, remains largely undocumented. The reader is referred to Ian Carroll’s

website IT Ops Kanban [Caroll 2013] and the 2014 presentation by ING Bank: ITIL and DevOps at War in

the Enterprise [Bouwman 2014]. In that presentation, one of the presenters specifically discourages the use of

a problem ticket in a service management tool if the problem is also a user story. Similar themes can be found

in Kim’s “The Phoenix Project” [Kim 2013] and in Limoncelli’s “The Practice of Cloud System

Administration” [Limoncelli 2014], p.184:

“Development and operations can best speak the same language by using the same tools wherever possible.

This can be as simple as using the same bug-tracking system for both development and

operations/deployment issues.”

This seemingly simple advice is contradictory to operating models based on differentiated process

architectures, such as those based on ITSM implementations.

The IT4IT Reference Architecture therefore explicitly identifies the functional components that imply queues

and is working towards a logically unified queuing interface so that demand may be understood globally

across the IT Value Chain. Some initial requirements for this follow.

Requirements

Here is a high-level representation of IT4IT functional components possibly containing queues:

Some initial requirements for this might be:

Process Requirements

Unified demand KQ.REQ.01 A view of unified demand should be possible via
integrating all queues

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 56

Process Requirements

Universal queue identification KQ.REQ.02 All functional components that contain queues
should be identified

Common backlog KQ.REQ.03 Support a common backlog for development and
infrastructure tasks

Cumulative flow KQ.REQ.04 Cumulative flow metrics should be available on all
queues

Integrate queues KQ.REQ.05 Smaller silo queues need to be integrated into
longer, cross-functional, higher value queues

Queue data management KQ.REQ.06 Queue data should have common aggregation into
a business intelligence environment (consider
process mining)

Queue definition KQ.REQ.07 Accommodate the need of self-organizing teams to
define their own queues, especially lifecycle states
(e.g., “definition of done”)

Process Flow

The process questions here are meta-questions:

• How can queues be recognized, managed, and rationalized?

Continuous improvement approaches are often used for this.

Automation Specification

Here is a high-level representation of IT4IT functional components possibly containing queues:

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 57

Service
Portfolio

Component

Portfolio
Demand

Component

Proposal
Component

Policy
Component

Defect
Component

Requirement
Component

Project
Component

Test
Component

Build
Component

Source
Control

Component

Change
Control

Component

Problem
Component

Incident
Component

Event
Component

Diagnostics &
Remediation
Component

Usage
Component

Chargeback/
Showback

Component

Strategy to

Portfolio
Requirement to Deploy Request to Fulfill Detect to Correct

Offer Mgmt.
Component

Offer Consumption Component

Service

Archi-

tecture

Policy
Require-

ment

Scope

Agree-

ment

IT

Initiative

Portfolio

Backlog

Item

Source

Conceptual

Service

Blueprint

Concep-

tual

Service

Logical

Service

Blueprint

Test

Case

Defect

Offer

Service

Release

Build

Service

Catalog

Entry

Desired

Service

Model

Usage

Record

Fulfill-

ment

Request

Sub-

scription

Charge-

back

Contract

Request

Problem/

Known

Error

Incident

Event

Service

Monitor

Run

Book

RFC

Service
Monitoring

Component

Catalog
Composition
Component

Shopping

Cart

Enterprise
Architecture
Component

Service
Design

Component

Fulfillment
Execution
Component

Request
Rationalization

Component

Configuration
Management

Component

Release
Composition
Component

Service Level
Component

Service

Contract

Actual

Service

CIs

Build

Package

Build
Package

Component

Service

Release

Blueprint

IT4IT Reference Architecture L1 V.2.0

Q Functional component possibly containing queue

Q

Q

Q

Q Q

Q

Q Q Q

Q

Q

Q

Q

Figure 20: Components Potentially Containing Queues in the IT4IT Reference Architecture

For clarity, here is a list of the identified components:

• Proposal component

• Portfolio Demand component

• Requirement component

• Project component

• Defect component

• Request Rationalization component

• Offer Consumption component

• Fulfillment Execution component

• Diagnostics & Remediation component

• Change Control component

• Event component

• Incident component

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 58

One possible enabling solution is to define a simple abstract queuing interface, specifying which components

implement it.

application ProcessSubtypes

Queue

IT Project

Scope
Agreement

Portfolio
Backlog Item

Requirement

Defect

Request

Fulfillment
Request

Incident

Event

RFC

Task

1 *

Figure 21: Common Process Class with Subtypes

A similar approach is seen in [Betz 2011a], p.102, where the following entities are defined as subtypes of a

master process entity:

• Demand Request

• Project

• Release

• Change

• Service Request

• Transaction

• Incident

• Improvement Opportunity

• Risk

• Problem

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 59

Other queues seen in the development world include:

• User story

• Requirement

• Defect

• Requirement

• Epic

• Issue

• Risk

• Action item

Conceptual Architecture

There are two conceptual classes: Queue and Task.

It is not necessary to define a complex behavioral interface; common data attributes across the queues would

add a great deal of value. If all process entities derive from a common type, what does that type require that

can apply to all processes?

Any Queue should be able to provide the following information:

• Basic identity information; e.g., “Incident”

• A collection of its Tasks, preferably filtered

• Any given Task, if provided its ID.

• Cumulative Flow Diagram aggregate metrics:

• Arrivals

• Time in Queue

• Quantity in Queue

• Departures

Any Task should be able to provide the following information:

• Identify its Queue; e.g., “Incidents”

• Identity information; e.g., “Oracle outage”

• Process (e.g., what is its current parent Queue?)

• Priority

• Performers (who is it currently assigned to and what is the referral history?)

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 60

• Partners (pre and post-dependent Tasks)

• Parents (overarching/aggregate Tasks)

• Estimated completion

• Current status

The following attributes are proposed for the two classes, considered as entities:

Artifact Attributes Additional Information

Queue ID Globally unique identifier for the queue

”“ QueueName The process name; e.g., Story, Change, Request

”“ LifecycleStates Enumeration of valid lifecycle states

Task ID Enumeration of valid lifecycle states

”“ QueueID The foreign key for the parent queue; e.g., Change or
Request

”“ Performer The party currently responsible for it

”“ Precondition What needs to occur previously?

”“ Postcondition What must occur afterwards?

”“ Parent Is there a containing task?

”“ Priority Within the scope of the process type, what is the
priority?

”“ AnticipatedCompletion When is completion anticipated?

Further work is needed regarding:

• Mutability and historical tracking (audit trails)

• Cross-process prioritization (global prioritization)

• Task estimation

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 61

References

(Please note that the links below are good at the time of writing but cannot be guaranteed for the future.)

• [Alliance 2001] A. Alliance: Agile Manifesto and Principles, 2001; refer to:

http://agilemanifesto.org/principles.html.

• [Allspaw 2009] J. Allspaw, P. Hammond: 10 Deploys per Day: Dev & Ops Cooperation at Flickr,

O’Reilly Publications, 2009; refer to: www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-

cooperation-at-flickr.

• [Anderson 2010] D.J. Anderson: Kanban: Successful Evolutionary Change for your Technology

Business, Blue Hole Press, Sequim, WA, 2010.

• [Bell 2010] S.C. Bell, M.A. Orzen: Lean IT, CRC Press, Boca Raton, Florida, 2010.

• [Betz 2011] C.T. Betz: Release Management Integration Pattern – Seeking DevOps Comments, 2011;

refer to: www.lean4it.com/2011/01/release-management-integration-pattern-seeking-devops-

comments.html.

• [Betz 2011a] C.T. Betz: Architecture and Patterns for IT: Service and Portfolio Management and

Governance (Making Shoes for the Cobbler’s Children), 2nd Edition, Elsevier/Morgan Kaufman,

Amsterdam, 2011.

• [Betz 2015] C.T. Betz: Calavera Project, Github, 2015; refer to: https://github.com/dm-

academy/Calavera.

• [Bouwman 2014] J-J. Bouwman, M. Heistek: ITIL and DevOps at War in the Enterprise, 2014; refer to:

www.youtube.com/watch?v=_dDsdbkSgOc, DevOpsDays.

• [Burrows 2015] M. Burrows: Kanban from the Inside: Understand the Kanban Method, Connect it to

what you Already Know, Introduce it with Impact, Blue Hole Press, 2015.

• [Buschmann 1996] F. Buschmann: Pattern-Oriented Software Architecture: A System of Patterns, Wiley,

Chichester; New York, 1996.

• [Carroll 2013] L. Carroll: IT Ops Kanban – Kanban Case Study for IT Operations, 2013; refer to:

http://itopskanban.wordpress.com/before/.

• [Duvall 2007] P.M. Duvall, S. Matyas, A. Glover: Continuous Integration: Improving Software Quality

and Reducing Risk, Addison-Wesley, Upper Saddle River, NJ, 2007.

• [Edwards 2012] D. Edwards: Integrating DevOps Tools into a Service Delivery Platform, 2010; refer to:

http://dev2ops.org/2012/07/integrating-devops-tools-into-a-service-delivery-platform-video/.

• [Fowler 1997] M. Fowler: Analysis Patterns: Reusable Object Models, Addison-Wesley, Menlo Park,

CA, 1997.

• [Fowler 2003] M. Fowler: Patterns of Enterprise Application Architecture, Addison-Wesley, Boston,

MA, 2003.

http://agilemanifesto.org/principles.html
http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
http://www.lean4it.com/2011/01/release-management-integration-pattern-seeking-devops-comments.html
http://www.lean4it.com/2011/01/release-management-integration-pattern-seeking-devops-comments.html
https://github.com/dm-academy/Calavera
https://github.com/dm-academy/Calavera
https://www.youtube.com/watch?v=_dDsdbkSgOc,%20DevOpsDays
http://itopskanban.wordpress.com/before/
http://dev2ops.org/2012/07/integrating-devops-tools-into-a-service-delivery-platform-video/

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 62

• [Gamma 1995] E. Gamma: Design Patterns: Elements of Reusable Object-Oriented Software, Addison-

Wesley, Reading, MA, 1995.

• [Gartner 2014] Gartner: Seven Steps to Start Your DevOps Initiative, 2014; refer to:

www.gartner.com/doc/2847717/seven-steps-start-devops-initiative.

• [Goldratt 1997] E.M. Goldratt: Critical Chain, North River, Great Barrington, MA, 1997.

• [Goldratt 2004] E.M. Goldratt, J. Cox: The Goal: A Process of Ongoing Improvement, North River

Press, Great Barrington, MA, 2004.

• [Hay 1996] D.C. Hay: Data Model Patterns: Conventions of Thought, Dorset House Pub., New York,

1996.

• [Hay 2006] D.C. Hay: Data Model Patterns: A Metadata Map, Morgan Kaufmann; Oxford: Elsevier

Science [distributor], San Francisco, CA, 2006.

• [Hohpe2003] Hohpe, G. & Woolf, B. (2003), Enterprise integration patterns : designing, building, and

deploying messaging solutions, Addison-Wesley, Boston

• [Hubbard 2010] D. Hubbard: How to Measure Anything: Finding the Value of Intangibles in Business,

Wiley, Boston, MA, 2010.

• [Humble 2011] J. Humble, D. Farley: Continuous Delivery, Addison-Wesley, Boston, 2011.

• [Kaplan 2005] J.D. Kaplan: Strategic IT Portfolio Management: Governing Enterprise Transformation,

Pittiglio Rabin Todd & McGrath Inc., United States, 2005.

• [Kim 2013] G. Kim, K. Behr, G. Spafford: The Phoenix Project: A Novel about IT, DevOps, and Helping

your Business Win, IT Revolution Press, 2013.

• [Kniberg 2011] H. Kniberg, K. Beck, K. Keppler: Lean from the Trenches: Managing Large-Scale

Projects with Kanban, Pragmatic Bookshelf, Dallas, TX, 2011.

• [Krafcik 1988] J. Krafcik: Triumph of the Lean Production System, Sloan Management Review 30(1),

41-52, 1988.

• [Larman 2002] C. Larman: Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and the Unified Process, Prentice Hall PTR, Upper Saddle River, NJ, 2002.

• [Larman 2009] C. Larman, V. Bodde: Scaling Lean & Agile Developments: Thinking and Organizational

Tools for Large-Scale Scrum, Addison-Wesley, Upper Saddle River, NJ, 2009.

• [Leffingwell 2010] D. Leffingwell: Agile Software Requirements: Lean Requirements Practices for

Teams, Programs, and the Enterprise, Pearson Education, 2010.

• [Liker 2004] J.K. Liker: The Toyota Way: 14 Management Principles from the World’s Greatest

Manufacturer, McGraw-Hill, New York, 2004.

• [Limoncelli 2014] T.A. Limoncelli, S.R. Chalup, C.J. Hogan: The Practice of Cloud System

Administration: Designing and Operating Large Distributed Systems, Vol. 2, Pearson Education, 2014.

• [Maizlish 2005] B. Maizlish, R. Handler: IT Portfolio Management Step-By-Step: Unlocking the

http://www.gartner.com/doc/2847717/seven-steps-start-devops-initiative

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 63

Business Value of Technology, John Wiley & Sons, Hoboken, NJ, 2005.

• [Minick 2012] E. Minick: A DevOps Toolchain: There and Back Again, Slideshare.net, 2012; refer to:

www.slideshare.net/Urbancode/building-devops-toolchain.

• [OASIS 2013] OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA),

Version 1.0, 2013; refer to: http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.

• [Ohno 1988] T. Ohno: Toyota Production System: Beyond Large-Scale Production, Productivity Press,

Cambridge, MA, 1988.

• [Poppendieck 2003] M. Poppendieck, T.D. Poppendieck: Lean Software Development: An Agile Toolkit,

Addison Wesley, Boston, 2003.

• [Poppendieck 2007] M. Poppendieck, T.D. Poppendieck: Implementing Lean Software Development:

From Concept to Cash, Addison-Wesley, London, 2007.

• [Reinertsen1997] D.G. Reinertsen: Managing the Design Factory: A Product Developer’s Toolkit, Free

Press, New York; London, 1997.

• [Reinertsen 2009] D.G. Reinertsen: The Principles of Product Development Flow: Second Generation

Lean Product Development, Celeritas, Redondo Beach, CA, 2009.

• [Ries 2011] E. Ries: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create

Radically Successful Businesses, Crown Business, New York, 2011.

• [SAFE 2015] The Scaled Agile Framework (SAFe), Scaled Agile, Inc., 2015; refer to:

www.scaledagile.com.

• [Scotland 2010] K. Scotland: Defining the Last Responsible Moment, 2010; refer to:

http://availagility.co.uk/2010/04/06/defining-the-last-responsible-moment.

• [Shortland 2012] A. Shortland, M. Lei: Using Rundeck and Chef to Build DevOps Toolchains, 2012;

refer to: http://dev2ops.org/2012/05/using-rundeck-and-chef-to-build-devops-toolchains-at-chefcon/.

• [Silverston 2008] L. Silverston: The Data Model Resource Book, Volume 3: Universal Patterns for Data

Modeling, Wiley, Indianapolis, Ind., 2008.

• [Thompson 2014] L. Thompson: Hitchhikers Guide to OpenStack Toolchains, 2014; refer to:

www.openstack.org/assets/presentation-media/Hitchhikers-Guide-to-OpenStack-Toolchains.pdf.

• [TSO 2011] ITIL Service Strategy: 2011 Edition, The Stationery Office, Norwich, UK, 2011.

• [Wiggins 2015] A. Wiggins: The Twelve-Factor App., 2015; refer to: http://12factor.net/.

• [Womack 1990] J.P. Womack, D.T. Jones, D. Roos: The Machine that Changed the World, based on the

Massachusetts Institute of Technology 5-million dollar 5-year study on the Future of the Automobile,

Rawson Associates, New York, 1990.

• [Womack 2003] J.P. Womack, D.T. Jones: Lean Thinking: Banish Waste and Create Wealth in your

Corporation, Free Press, New York, 2003.

http://www.slideshare.net/Urbancode/building-devops-toolchain
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://www.scaledagile.com/
http://availagility.co.uk/2010/04/06/defining-the-last-responsible-moment
http://dev2ops.org/2012/05/using-rundeck-and-chef-to-build-devops-toolchains-at-chefcon/
https://www.openstack.org/assets/presentation-media/Hitchhikers-Guide-to-OpenStack-Toolchains.pdf
http://12factor.net/

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 64

Acronyms and Abbreviations

CMDB Configuration Management Database

CMMI Capability Maturity Model Integration

DevOps Development and Operations

DIA DevOps Implementation Approach

DIM DevOps Implementation Model

DMM DevOps Maturity Model

IT Information Technology

ITIL Information Technology Infrastructure Library

ITSM IT Service Management

KPI Key Performance Indicator

MTBF Mean Time Between Failures

MTTR Mean Time to Recovery

RUP Rational Unified Process

SAFe Scaled Agile Framework

SIT System Integration Testing

TOSCA Topology and Orchestration Specification for Cloud Applications (OASIS)

UAT User Acceptance Testing

WIP Work-in-Process

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 65

Acknowledgements

The Open Group gratefully acknowledges the contribution of the following people in the development of this

document:

• Charles Betz

• Eran Cohen

• Sue Desiderio

• Phillippe Geneste

• Gunnar Menzel

• Lars Rossen

• Vasu Sasikanth Sankhavaram

• Karel van Zeeland

IT4IT™ Agile Scenario

www.opengroup.org A Wh i t e P ap e r P u b l i s h ed b y Th e O p e n Gr o u p 66

About the IT4IT™ Forum

The IT4IT Reference Architecture refers to the capability or capabilities required to manage the business of

IT, covering IT end-to-end from plan, through build and operate. It assumes the principle that the business of

running IT is industry-agnostic and that IT leaders share the same problems and opportunities in managing

the service lifecycle effectively. At the core, these problems are rooted in IT structure, competencies, and

capabilities and the missing link has been the lack of an IT operating model. The IT4IT Reference

Architecture proposes that it is possible to establish an IT operating model standard mapped to the existing IT

landscape yet flexible enough to support the volatility inherent in the IT industry and accommodate changing

IT paradigms (composite apps, Agile Development, mobile technology, multi-sourcing, etc.).

The IT4IT Forum was created when its predecessor, the IT4IT Consortium, transferred its activities to The

Open Group. The IT4IT Consortium came into being in 2011 as a practitioner-driven initiative. The

Consortium was comprised of IT professionals from multiple industry segments and several IT vendors who

agreed to share their experiences for the purpose of developing and publishing future-safe prescriptive

guidance for implementing end-to-end an IT4IT architecture with full insight. Past and present members

include Enterprise Architects and IT department leaders or industry consultants from: Royal Dutch Shell,

Achmea, Munich RE, PwC, Accenture, AT&T, HP IT, ING Bank, and University of South Florida.

“Cloud services and multi-provider outsourcing are adding new degrees of complexity to IT service

management. The Consortium will use its real-life, cross-industry expertise to define a new operating model

for IT.”

Dr. Dirk Heiss, Global Infrastructure Services Officer, Munich RE

For more information on the IT4IT Forum, please visit www.opengroup.org/it4it.

About The Open Group

The Open Group is a global consortium that enables the achievement of business objectives through IT

standards. With more than 500 member organizations, The Open Group has a diverse membership that spans

all sectors of the IT community – customers, systems and solutions suppliers, tool vendors, integrators, and

consultants, as well as academics and researchers – to:

• Capture, understand, and address current and emerging requirements, and establish policies and share

best practices

• Facilitate interoperability, develop consensus, and evolve and integrate specifications and open source

technologies

• Offer a comprehensive set of services to enhance the operational efficiency of consortia

• Operate the industry’s premier certification service

Further information on The Open Group is available at www.opengroup.org.

https://www.opengroup.org/it4it
http://www.opengroup.org/

	Copyright © 2016, The Open Group
	The Open Group hereby authorizes you to use this document for any purpose, PROVIDED THAT any copy of this document, or any part thereof, which you make shall retain all copyright and other proprietary notices contained herein.
	This document may contain other proprietary notices and copyright information.
	Nothing contained herein shall be construed as conferring by implication, estoppel, or otherwise any license or right under any patent or trademark of The Open Group or any third party. Except as expressly provided above, nothing contained herein shal...
	Note that any product, process, or technology in this document may be the subject of other intellectual property rights reserved by The Open Group, and may not be licensed hereunder.
	This document is provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. Some jurisdictions do not all...
	Any publication of The Open Group may include technical inaccuracies or typographical errors. Changes may be periodically made to these publications; these changes will be incorporated in new editions of these publications. The Open Group may make imp...
	Should any viewer of this document respond with information including feedback data, such as questions, comments, suggestions, or the like regarding the content of this document, such information shall be deemed to be non-confidential and The Open Gro...
	If you did not obtain this copy through The Open Group, it may not be the latest version. For your convenience, the latest version of this publication may be downloaded at www.opengroup.org/bookstore.
	ArchiMate®, DirecNet®, Making Standards Work®, OpenPegasus®, The Open Group®, TOGAF®, UNIX®, UNIXWARE®, X/Open®, and the Open Brand X® logo are registered trademarks and Boundaryless Information Flow™, Build with Integrity Buy with Confidence™, Depend...
	Apache™ is a trademark of the Apache Software Foundation.
	CMMI® is registered in the US Patent and Trademark Office by Carnegie Mellon University.
	ITIL® is a registered trademark of AXELOS Ltd.
	Java® is a registered trademark and OpenJDK™ is a trademark of Oracle Corporation in the United States and other countries.
	IT4IT™ Agile Scenario
	Document No.: W162
	Published by The Open Group, February, 2016.
	Any comments relating to the material contained in this document may be submitted to:
	The Open Group, 44 Montgomery St. #960, San Francisco, CA 94104, USA
	or by email to:
	ogspecs@opengroup.org
	Version of the Reference Architecture
	DevOps
	Bi-Modal IT
	Kanban
	Scaled Agile Framework (SAFe)
	Agile and the IT4IT Framework
	Business Goals
	Portfolio Backlog Scenario
	Product Backlog Scenario
	Proposed Changes to the IT4IT Reference Architecture for the Portfolio and Product Backlog Scenario
	DevOps and the IT4IT Reference Architecture
	DevOps Reference implementation
	Continuous Deployment Scenario
	Proposed Changes to the Reference Architecture for the DevOps Scenario
	Kanban Scenario

