
	

Copyright	©	Levi9	IT	Services	2016	 1	

Continuous	Delivery	Whitepaper	

Our	 highest	 priority	 is	 to	 satisfy	 the	 Customer	 through	
early	 and	 Continuous	 Delivery	 of	 valuable	 software.																									
Principle	#1,	Agile	Manifesto	

Releasing	 software	 is	 often	 a	 long,	
difficult	 and	 risky	 process.	 Defects	
and	 integration	 issues	 pop-up	 at	 the	
very	 last	 moment	 and	 cause	
dissatisfaction	 to	 the	 development	
teams	and,	even	worse,	to	end	users.	
Furthermore,	 lack	 of	 collaboration	
between	 the	 software	 development	
and	 IT	 Operations	 teams	 generally	
results	in	integration	and	deployment	
errors	and	finger-pointing.	
	
Continuous	 Delivery	 can	 solve	 all	 of	
that	 and	 more.	 It	 can	 help	 IT	
organizations	 to	 become	 lean	 and	
agile.	 It	 can	 help	 them	 to	
continuously	 adapt	 software	
according	 to	 the	 user	 feedback	 and	
to	 stay	 ahead	 of	 changing	 market	
conditions,	 while	 improving	 the	 quality	 and	 speed	 of	 delivery.	 Continuous	 Delivery	 makes	 the	
delivery	of	the	software,	from	the	hands	of	the	developers	to	production	environment	a	repeatable,	
reliable,	 visible	 and	 largely	 automated	 process	 with	 well	 understood	 and	 quantifiable	 risks.	
Continuous	Delivery	creates	an	organized	evolution	of	the	software	development	process.	

How	to	Achieve	This	

Saying	that	it	is	all	about	practices,	tools	and	people	would	not	be	saying	anything	new.	
Practices	such	as	Version	Control	and	Continuous	Integration	have	been	in	existence	for	quite	some	
time.	
	
Practices	 such	 as	 Test	 Automation,	 Infrastructure	 Automation,	 Automated	 Deployment	 and	
Continuous	Monitoring	 have	 developed	 significantly	 over	 the	 last	 few	 years.	 The	 complete	 set	 of	
these	practices,	fully	integrated,	we	call	Continuous	Delivery.	



	

Copyright	©	Levi9	IT	Services	2016	 2	

	
Source	code	and	configuration	changes	are	checked-in	to	a	Version	Control	System,	and	each	check-
in	(potentially)	triggers	a	Continuous	Integration	build.	Each	integration	is	verified	by	an	automated	
build	 and	 by	 unit	 and	 integration	 tests	 to	 detect	 component	 and	 integration	 errors	 as	 quickly	 as	
possible.	This	approach	leads	to	a	reduced	number	of	integration	problems,	and	allows	the	teams	to	
develop	software	more	rapidly.	If	the	build	is	broken,	all	ongoing	activities	stop	until	the	problem	is	
solved	and	the	build	becomes	releasable	again.	
	
Test	Automation	as	a	practice	that	enables	automated	execution	of	test	scripts	and	comparison	of	
actual	 with	 expected	 results.	 Test	 Automation	 encompasses	 unit,	 integration,	 functional,	
performance	and	security	tests	and	reduces	the	need	for	manual	tests	to	a	minimum.	This	requires	
not	only	skills	from	both	testers	as	well	as	developers	and	their	continuous	teamwork,	but	also	that	
quality	is	embedded	in	the	architecture	of	the	software	itself.	
	
Infrastructure	 Automation	 enables	 automated	 provisioning	 and	 configuration	 of	 hosting	
environments	 and	 forms	 the	 bridge	 between	 Continuous	 Integration	 and	 Test	 Automation.	 With	
modern	cloud	and	container	possibilities,	this	enables	us	to	quickly	spin-up	a	test	environment	from	
the	 code,	 run	 our	 tests	 and	 destroy	 the	 environment	when	 automated	 tests	 are	 finished.	What’s	
more,	we	are	able	to	run	as	many	test	environments	as	we	need	and	ease	dependencies	between	
the	teams	and	between	different	software	modules.	
	
Finally,	the	so	called	“last	mile”	of	the	deployment	pipeline	is	covered	by	Automated	Deployment.	
This	 part	 of	 the	 process	 can	 be	 fully	 or	 semi-automated.	 Full	 automation	 of	 the	 deployments	 is	
usually	 used	 in	 the	 case	 of	 test	 environments,	 while	 in	 the	 case	 of	 acceptance	 or	 production	
environment	we	 potentially	want	 to	 keep	 an	 additional	 level	 of	 control,	which	 includes	 a	manual	
step	where	an	operator	selects	the	application	version	and	the	deployment	environment.		
	
Thereby	Continuous	 System	and	Application	Monitoring	 enables	 a	 quick	 response	 to	outages	 and	
decreases	 time	 to	 recover.	 Most	 importantly,	 to	 make	 Continuous	 Delivery	 a	 success,	 the	



	

Copyright	©	Levi9	IT	Services	2016	 3	

Development,	Test	and	 IT	Operations	teams	need	to	work	together	as	one	delivery	team	from	the	
very	start.	

Adopting	Continuous	Delivery	

At	 Levi9	 we	 have	 established	 a	 Continuous	 Delivery	 Maturity	 Model	 allowing	 us	 to	 help	 our	
customers	to	adopt	Continuous	Delivery	practices	in	a	pragmatic	and	gradual	manner.	We	have	been	
frequently	using	this	approach	to	help	major	players	from	the	E-Retail,	Digital	Marketing	and	FinTech	
sector	to	increase	quality	and	improve	time-to-market.	
	
When	engaging	with	a	customer,	we	initially	perform	an	assessment	of	the	current	status.	This	step	
is	quantifiable,	 to	show	to	what	extent	you	have	already	adopted	 the	various	Continuous	Delivery	
practices.	
	
As	a	result	of	the	assessment,	a	decision	needs	to	be	made;	what	are	your	short	and	long	goals,	i.e.	
which	benefits	the	introduction	of	some	of	the	Continuous	Delivery	practices	should	achieve	for	you.	
This	must	be	done	realistically	and	pragmatically;	a	‘big	bang’	is	not	always	better	or	cost-effective.	
We	aim	for	quick	wins	first	and	work	with	development	teams	on	enabling	“more	difficult”	aspects	
later	in	the	process.	
	
Based	on	the	assessment	and	the	pragmatic	ambition,	a	clear	plan	 is	created	where	improvements	
are	prioritized	and	evaluations	are	planned	for	re-assessing	the	value	achieved	by	the	improvements	
as	 compared	 with	 the	 set	 goals.	 Our	 aim	 is	 to	 introduce	 the	 elements	 of	 Continuous	 Delivery	
gradually	 and	 to	 measure	 the	 benefits	 of	 each	 step.	 The	 approach	 we	 take	 affects	 the	 Software	
Development	process	(in	its	widest	sense),	and	may	result	in	recommendations	for	improvements	in	
the	 software	 architecture	 or	 changes	 in	 the	 organizational	 aspect	 of	 the	 software	 development	
process.	With	this	approach	we	aim	is	to	reduce	the	time-to-market	and	minimize	the	risk	which	is	
part	of	the	release	process.		
	
The	plan	is	further	sub-divided	in	five	steps.	As	the	first	step,	we	aim	to	have	all	the	source	code	and	
application	 configuration	 versioned	 in	 the	 source	 code	 repository.	 Thereby	 we	 establish	 clear	
procedures	 related	 to	 versioning	 of	 the	 code,	 define	 and	 implement	 a	 branching	 and	 tagging	
strategy,	which	gives	more	transparency	of	the	development	teams’	work.	
	
In	 the	 second	 step	 we	 establish	 Continuous	 Integration.	 This	 is	 done	 by	 using	 integrated	 and	
automated	 tooling	 such	 as	 the	 continuous	 integration	 server,	 artifact	 repository	 and	 source	 code	
quality	 server.	 This	 enables	 us	 to	 continuously	monitor	 the	 technical	 quality	 of	 the	 software	 and	
work	on	the	areas	 identified	as	technical	debt.	Furthermore,	this	step	enables	us	to	optimally	take	
care	of	dependencies,	and	potentially	use	 software	 techniques	 such	as	 feature	 toggles	 that	would	
enable	added-value	to	the	business	(for	instance	A/B	Testing	of	features	in	production).	
	
As	 the	 third	 step,	 we	 establish	 Automated	 Deployment	 from	 the	 artifact	 repository	 server	 to	 the	
various	application	environments.	
	
As	the	fourth	step,	we	tackle	is	Infrastructure	Provisioning	and	Configuration	Management.	This	step	
is	used	to	script	the	environments	and	applications,	describe	configurations	in	the	code	enabling	us	



	

Copyright	©	Levi9	IT	Services	2016	 4	

to	 automatically	 provision	 fully	 configured	environments	 anytime	we	need	 them.	We	always	 start	
from	a	test	environment	first	and	gradually	promote	to	acceptance	and	production.	
	
In	 the	 final	 fifth	 step	 we	 establish	 Continuous	 Monitoring	 and	 set	 up	 Log	 Management.	 This	 is	
enabled	 by	 the	 previous	 actions	 in	 the	 software	 itself	 (establishing	 monitoring	 hooks	 in	 the	
application)	and	in	the	configuration	(collecting	monitoring	resources).	The	same	principles	apply	to	
log	management,	 which	 enables	 secure	 access	 of	 the	 development	 teams	 to	 the	 application	 and	
system	logs.	



	

Copyright	©	Levi9	IT	Services	2016	 5	

Continuous	Delivery	
Maturity	Level	

Initial	 Novice	 Intermediate	 Advanced	

Version	Control	 Source	code	 Unit	tests	
Application	configuration	code	

Database	schema	
Functional	tests	and	test	data	
Clear	branching	and	merging	strategy	
Embedding	traceability	

Infrastructure	configuration	code	
Main	branch	always	deployable	
Automated	release	notes	

Integration	 Manual	or	scripted	builds	 Scheduled	automated	builds	
(nightly)	
Dependency	management	

Continuous	integration	of	source	code	and	
unit	tests	(commit	based)		
Artifact	repository	

CI	build	cluster	
CI	orchestrated	infrastructure	
provisioning	
Continuous	integration	of	acceptance	
tests	

Quality	 Manual	testing	 Test	management	
Automated	unit	and	
integration	tests	

Automated	functional	tests	
Static	code	analysis	
Facilitated	peer	reviews	

Automated	acceptance	tests	
Automated	non-functional	tests	
(performance,	security)	
Test	cluster	

Deployment	 Manual	
Manual	database	schema	
changes	

Scripted	
Same	process	across	different	
environments	

Automated	
Deployment	pipeline	
Gated	automated	promotions	

Orchestrated	deployments	
One-click	deployments	
Continuous	deployments	to	
production	

Infrastructure	 Physical	
Manual	provisioning	and	
configuration	

Virtual	
Highly	available,	redundant	
with	fail-over	

Cloud	
Automated	provisioning	
Infrastructure	as	a	Code	

Self-service	for	experimentation	
Container	based	infrastructure	
Network	automation	

Monitoring	 No	monitoring	 System	level	monitoring	 Application	level	monitoring	
Log	management	
Real-time	centralized	logs	monitoring	

Application	performance	monitoring	
Anomaly	detection	
Dynamic	scaling	

Architecture	 Tightly	coupled	 De-coupled	
Covered	with	unit	tests	

Service	oriented	
Fit	for	purpose	frameworks	
Testable	end-to-end	
Enables	monitoring	

Component	based	
Scalable	
Micro-services	

Organization	 Waterfall	approach	
Silo	structure	

Iterative	approach	
Direct	collaboration	
Requirements	management	

Agile	
Lean	

Multi-functional	teams	
DevOps	
Technical	debt	addressed	regularly	

	



	

Copyright	©	Levi9	IT	Services	2016	 6	

Recommended	Tooling	

Based	on	our	extensive	experience,	we	have	compiled	a	toolset	that	enables	us	to	establish	end-to-end		Continuous	
Delivery.	This	toolset	 is	supported	by	real-life	examples,	knowledge	and	experience	with	 installation,	configuration	
and	integration	into	a	coherent	deployment	pipeline.	
	

	

Category	 Java,	PHP,	Android	 .NET	
Version	Control	System	 Git	

	
Git,	TFS	

Continuous	Integration	 Jenkins,	Bamboo,	Nexus,	Maven,	Gradle	
	

TeamCity,	TFS,	NuGet	

Test	Automation	and	
Code	Quality	

Selenium,	TestNG,	Cucumber,	
REST	Assured,	soapUI,	JMeter	

SonarQube,	Phabricator,	Crucible	

Selenium,	TestNG,	
ReSharper,	FxCop,	Review	Assistant	

Automated	Deployment	 Jenkins,	Liquibase	
	

Octopus	Deploy,	RedGate	

Infrastructure	Automation	and	
Configuration	Management	

Puppet,	VMware,	Amazon,	Docker	 VMware,	Amazon,	OpenStack,	Azure,	
Puppet,	PowerShell	DSC	

Continuous	Monitoring	 Zabbix,	AppDynamics,	
Graylog,	Logstash,	ElasticSearch,	Kibana	

Zabbix,	SCOM	

Team	Collaboration	 Jira,	Confluence	
	

Jira,	Confluence,	TFS	

Conclusion	

In	 its	very	essence,	Continuous	Delivery	 is	 the	 implementation	of	 lean	principles.	 It	defines	“Done”	as	 released	to	
production,	 which	means	 being	 able	 to	 reap	 business	 benefits.	 It	 enables	 organizations	 to	 become	 truly	 agile.	 It	
provides	fast	feedback	and	requires	a	prompt	response	from	the	whole	team.	It	increases	quality,	since	the	defects	
are	 found	 early	 in	 the	 process,	 while	 they	 are	 still	 easy	 to	 fix.	 Continuous	 Delivery	 automates,	 accelerates	 and	
integrates	all	of	the	processes	needed	to	develop	software.	It	embeds	quality,	shortens	release	cycle	times,	reduces	
the	 defect	 rate	 and	 increases	 the	 frequency	 of	 delivery,	 which	 results	 in	 better	 customer	 focus,	 faster	 time-to-
market	 and	 improved	 reliability	 of	 the	delivered	 solution.	At	 Levi	Nine,	we	 are	 very	passionate	 about	Continuous	
Delivery	and	have	been	successful	 in	helping	our	customers	with	 its	 implementation,	which	has	made	 them	more	
successful	in	the	competitive	market	they	are	part	of.	
	

Version 
Control

Continuous 
Integration

Artefact 
Repo

Infrastructure 
Automation

Automated 
Deployment

Continuous 
Monitoring

Test 
Automation


